首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
2.
3.
The linear solvation energy relationship (LSER) was applied to characterize biopartitioning micellar chromatography (BMC) system using monolithic column, and was utilized to compare the above system with other physicochemical and biological processes in this study. The solute volume and HB basicity had the maximum influence on the retention of the solutes, and an increase in the dipolarity/polarizability, HB basicity, HB acidity or excess molar refraction of the solutes decreased the retention. Principal component analysis of LSER coefficients showed that the system had certain similarity to drug biomembrane transport processes, such as blood–brain barrier penetration, transdermal and oral absorption. The quantitative retention–activity relationship (QRAR) of drug penetration across blood–brain barrier was established and its predictive capability for this biological process was evaluated. With the aid of the high flow rate, the monolithic column significantly facilitated the high-throughput analysis of large compounds’ bank without changing the mechanism of the retention in BMC and without impairing good predictive capability of the biological processes. Accordingly, the BMC system, together with monolithic column, allows for high-throughput profiling the biological processes, such as blood–brain barrier penetration.  相似文献   

4.
王雪梅  王娟  杜彤彤  马晓敏  卢小泉 《色谱》2018,36(3):190-194
以石墨烯海绵(GS)为固相萃取材料,建立了固相萃取-高效液相色谱(SPE-HPLC)同时测定化妆品中6种紫外吸收剂的分析方法。样品经甲醇超声提取,用自制的石墨烯海绵固相萃取小柱净化富集,丙酮洗脱。采用Agilent Zorbax SB-C18色谱柱(150 mm×4.6 mm,5 μm)进行分离,甲醇-水(95∶5,v/v)为流动相,紫外检测波长为340 nm。结果表明,6种紫外吸收剂均在各自的范围内线性关系良好,2-(2'-羟基-5'-甲基苯基)苯并三氮唑的相关系数(r) > 0.997,其他5种r > 0.999。方法的检出限(LOD,S/N=3)和定量限(LOQ,S/N=10)分别为0.08~1.82 μg/L和0.26~6.07 μg/L。在20、50和100 μg/L 3个加标水平下,6种目标物的加标回收率为61.1%~119.0%,相对标准偏差(RSD)小于1%(n=6)。该法简便、快速,灵敏度高,重复性好,适用于不同类型化妆品中紫外吸收剂的检测。  相似文献   

5.
An ionic‐liquid‐based in situ dispersive liquid–liquid microextraction method coupled to headspace gas chromatography and mass spectrometry was developed for the rapid analysis of ultraviolet filters. The chemical structures of five ionic liquids were specifically designed to incorporate various functional groups for the favorable extraction of the target analytes. Extraction parameters including ionic liquid mass, molar ratio of ionic liquid to metathesis reagent, vortex time, ionic strength, pH, and total sample volume were studied and optimized. The effect of the headspace temperature and volume during the headspace sampling step was also evaluated to increase the sensitivity of the method. The optimized procedure is fast as it only required ∼7–10 min per extraction and allowed for multiple extractions to be performed simultaneously. In addition, the method exhibited high precision, good linearity, and low limits of detection for six ultraviolet filters in aqueous samples. The developed method was applied to both pool and lake water samples attaining acceptable relative recovery values.  相似文献   

6.
Nanoparticles, spherical particles with diameters less than 100 nm, are promising theranostic devices for noninvasive diagnosis and therapy. In this study, nanoparticles composed of polyethylene glycol and silica were prepared, and their migration behavior was examined using capillary electrophoresis. The effects of the sodium dodecyl sulfate concentration in the electrolyte, the nanoparticle size, and the encapsulated molecule on the migration were examined. The addition of sodium dodecyl sulfate into the electrolyte had a significant effect on the electrophoretic mobility of polyethylene glycol nanoparticles, but a small effect on that of silica nanoparticles. As for the size effect, the mobility became a little faster for smaller nanoparticle sizes for both polyethylene glycol and silica nanoparticles. The encapsulated molecule affected the mobility of the nanoparticles through interactions between the encapsulated molecules and sodium dodecyl sulfate. We propose that the large effect of sodium dodecyl sulfate on the migration of the polyethylene glycol nanoparticles was due to the large spaces within the nanoparticles. These results indicate that nanoparticle migration is mainly determined by the nanoparticle components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号