首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
First‐ and second‐dimension retention times for a series of alkyl phosphates were predicted for multiple column combinations in GC×GC. This was accomplished through the use of a three‐parameter thermodynamic model where the analytes’ interactions with the stationary phases in both dimensions are known. Ionic liquid columns were employed to impart unique selectivity for alkyl phosphates, and it was determined that for alkyl phosphate compounds, ionic liquid columns are best used in the primary dimension. Retention coordinates for unknown phosphates are predicted from the thermodynamic parameters of a set standard alkyl phosphates. Additionally, we present changing retention properties of alkyl phosphates on some ionic liquid columns, due to suspected reaction between the analyte and column. This makes it difficult to accurately predict their retention properties, and in general poses a problem for ionic liquid columns with these types of analytes.  相似文献   

2.
Influence of alkyl chain length on phosphate self-assembled monolayers   总被引:1,自引:0,他引:1  
A series of alkyl phosphates with alkyl chain lengths ranging from C10 to C18 have been synthesized. Self-assembled monolayers (SAMs) of these molecules were prepared on titanium oxide surfaces by immersion of the substrates in alkyl phosphate solutions of 0.5 mM concentration in n-heptane/isopropanol. The SAMs were characterized by means of dynamic water contact angle (dCA) measurements, variable-angle spectroscopic ellipsometry (VASE), X-ray photoelectron spectroscopy (XPS), and polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). A higher degree of order and packing density within the monolayers was found for alkyl phosphates with alkyl chain lengths exceeding 15 carbon atoms. This is reflected in a lower dCA hysteresis, as well as a film thickness measured by VASE and XPS close to the expected values for SAMs with an average alkyl chain tilt angle of 30 degrees to the surface normal. Additionally a shift of the symmetric and antisymmetric C-H stretching modes in the PM-IRRAS spectra to lower wave numbers was observed. These findings imply a higher two-dimensional crystallinity of the films derived from alkyl phosphates with a longer alkyl chain length.  相似文献   

3.
The radical polymerization of N‐isopropylacrylamide (NIPAAm) in toluene at low temperatures was investigated in the presence of triisopropyl phosphate (TiPP). The addition of TiPP induced a syndiotactic specificity that was enhanced by the polymerization temperature being lowered, whereas atactic polymers were obtained in the absence of TiPP, regardless of the temperature. Syndiotactic‐rich poly(NIPAAm) with a racemo dyad content of 65% was obtained at ?60 °C with a fourfold amount of TiPP, but almost atactic poly(NIPAAm)s were obtained by the temperature being lowered to ?80 °C. This result contrasted with the result in the presence of primary alkyl phosphates, such as tri‐n‐propyl phosphate: the stereospecificity varied from syndiotactic to isotactic as the polymerization temperature was lowered. NMR analysis at ?80 °C revealed that TiPP predominantly formed a 1:1 complex with NIPAAm, although primary alkyl phosphates preferentially formed a 1:2 complex with NIPAAm. Thus, it was concluded that a slight increase in the bulkiness of the added phosphates influenced the stoichiometry of the NIPAAm–phosphate complex at lower temperatures, and consequently a drastic change in the effect on the stereospecificity of NIPAAm polymerization was observed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3899–3908, 2005  相似文献   

4.
A liquid chromatography/electrospray ionization tandem mass spectrometric method for analyzing organophophorus flame retardants and plasticizers in drinking and environmental waters was developed. Five alkyl phosphates, three chlorinated alkyl phosphates, two aryl phosphate and triphenylphosphine oxide were selected for this study. These compounds were extracted from water samples by a hydrophilic polymeric solid-phase extraction cartridge. Accuracy and precision were evaluated analyzing 0.5 L of water samples spiked at concentrations of 10 and 100 ng/L for drinking water and at 300 and 1000 ng/L for river water. Except for trimethyl phosphate, analyte recoveries were better than 80%, and were not dependent on the type of aqueous matrix in which they were dissolved. At the spike levels considered, within-day precision was between 3 and 12% for tap water and between 4 and 14% for river water, and estimated method quantification limits ranged from 0.2 to 3.9 ng/L. A short survey conducted by analyzing some river water samples (River Tiber) ascertained the presence of ten organophosphorus compounds at concentration levels ranging from a few nanograms per liter to 323 ng/L for tris(2-butoxyethyl) phosphate.  相似文献   

5.
Dialkyl phosphate esters used as gellants in some oil well fracturing processes for conventional oil production can result in contamination of the collected crude. Though the exact mechanism is unclear, such compounds form volatile phosphorus that compromises refinery processes. Our initial research involved producing a comprehensive two-dimensional gas chromatographic method (GC × GC) for the detection and quantification of alkyl phosphate esters in petroleum samples, which surpassed the current method employed in sensitivity and speciation capabilities. However, selective detection is required for such analytes in petroleum matrices. This article describes the application of GC × GC with time-of-flight mass spectrometry for selective detection to the analysis of di- and tri-alkyl phosphates in petroleum samples. Features in the electron impact mass spectra of alkyl phosphates are discussed along with the GC × GC retention characteristics of the compounds. Based on these discussions, a preliminary classification and quantification of alkyl phosphate contamination in a suite of industrial samples is then presented.  相似文献   

6.
Formation and structure of titanium alkyl phosphates   总被引:1,自引:0,他引:1  
Titanium alkyl phosphates (TiAP) synthesized by the reactions of Ti(SO(4))(2) with monohexyl, monooctyl, and monodecyl phosphates in aqueous media were characterized by various means. The XRD patterns of TiAP showed a strong diffraction peak and two weak ones below 2theta=15 degrees. The TiAP particle prepared using octyl phosphate gave rise to the lattice patterns having uniform alternating spacings of ca. 0.7 and ca. 2.0 nm. When treated at 900 degrees C, TiAP crystallized as TiP(2)O(7). The chemical formula could be shown as (ROPO(3))(2)Ti.0.44H(2)O. These facts suggest that the TiAP is composed of a multilayer alternating bimolecular layer of alkyl phosphates and hydrated titanium phosphate phase. Alkyl groups in the layers were removed by outgassing above 300 degrees C to give the materials having mesopores with a diameter of ca. 2 nm.  相似文献   

7.
The thermal decompositions of a series of tris dibromo alkyl phosphates similar to tris(2,3-dibromopropyl) phosphate (T23DBPP), alone and incorporated in poly(ethylene terephthalate) (PET) fabric have been studied by non-isothermal thermogravimetry. Kinetic evaluation revealed that the decomposition rate for tris(2,3-dibromo-3-methyl butyl) phosphate (T23DB3MBP) was the fastest followed by tris(2,3-dibromo-2-methyl propyl) phosphate (T23DB2MPP). Tris(3,4-dibromobutyl) phosphate (T34DBBP) and tris(2,3-dibromo butyl) phosphate (T23DBBP) had only marginally faster decomposition rates than T23DBPP itself. Measured decomposition rates for PET treated with the chemicals were only marginally faster than those for the untreated fabric, except during the initial weight loss stages where some decomposition of the chemicals appears to be occurring. Calculated kinetic parameters using an isoconversional method, along with regression coefficients of compensation effect plots suggest that all the chemicals behave similar to T23DBPP in having an apparent detrimental effect on the condensed phase decomposition kinetics while relying on their combustion inhibition effects to act as gas phase flame retardants.  相似文献   

8.
Micellar liquid chromatography (MLC) remains hindered by reduced chromatographic efficiency compared to reversed phase liquid chromatography (RPLC) using hydro-organic mobile phases. The reduced efficiency has been partially explained by the adsorption of surfactant monomers onto the stationary phase, resulting in a slow mass transfer of the analyte within the interfacial region of the mobile phase and stationary phase. Using an array of 12 columns, the effects of various bonded stationary phases and silica pore sizes, including large-pore short alkyl chain, non-porous, superficially porous and perfluorinated, were evaluated to determine their impact on efficiency in MLC. Additionally, each stationary phase was evaluated using 1-propanol and 1-butanol as separate micellar mobile phase alcohol additives, with several columns also evaluated using 1-pentanol. A simplified equation for calculation of A' and C' terms from reduced plate height (h) versus reduced velocity (nu) plots was used to compare the efficiency data obtained with the different columns and mobile phases. Analyte diffusion coefficients needed for the h versus nu plots were determined by the Taylor-Aris dispersion technique. The use of a short alkyl chain, wide-pore silica column, specifically, Nucleosil C4, 1000A, was shown to have the most improved efficiency when using a micellar mobile phase compared to a hydro-organic mobile phase for all columns evaluated. The use of 1-propanol was also shown to provide improved efficiency over 1-butanol or 1-pentanol in most cases. In a second series of experiments, column temperatures were varied from 40 to 70 degrees C to determine the effect of temperature on efficiency for a subset of the stationary phases. Efficiency improvements ranging from 9% for a Chromegabond C8 column to 58% for a Zorbax ODS column were observed over the temperature range. Based on these observed improvements, higher column temperatures may often yield significant gains in column efficiency, assuming the column is thermally stable.  相似文献   

9.
Although aryl phosphates have been the subject of numerous experimental studies, far less data bearing on the mechanism and transition states for alkyl phosphate reactions have been presented. Except for esters with very good leaving groups such as 2,4-dinitrophenol, the monoanion of phosphate esters is more reactive than the dianion. Several mechanisms have been proposed for the hydrolysis of the monoanion species. (18)O kinetic isotope effects in the nonbridging oxygen atoms and in the P-O(R) ester bond, and solvent deuterium isotope effects, have been measured for the hydrolysis of m-nitrobenzyl phosphate. The results rule out a proposed mechanism in which the phosphoryl group deprotonates water and then undergoes attack by hydroxide. The results are most consistent with a preequilibrium proton transfer from the phosphoryl group to the ester oxygen atom, followed by rate-limiting P-O bond fission, as originally proposed by Kirby and co-workers in 1967. The transition state for m-nitrobenzyl phosphate (leaving group pK(a) 14.9) exhibits much less P-O bond fission than the reaction of the more labile p-nitrophenyl phosphate (leaving group pK(a) = 7.14). This seemingly anti-Hammond behavior results from weakening of the P-O(R) ester bond resulting from protonation, an effect which calculations have shown is much more pronounced for aryl phosphates than for alkyl ones.  相似文献   

10.
研究了环状磷酸酯的酶促开环聚合反应,讨论了环状磷酸酯取代烷基对于酶促开环聚合及相应聚磷酸酯性能的影响,发现烷基取代基长度对于聚合度没有明显影响; 但随着环状磷酸酯的取代基长度增加,产率随之降低,聚磷酸酯的亲脂性增强. 猪胰脂肪酶和假丝酵母皱褶酶显示出比碱性磷脂酶更高的活性.  相似文献   

11.
Abstract

Transesterication of inositol 1,2-cyclic phosphate with primary alcohols in the presence of phospholipase C produces alkyl inositol phosphates.  相似文献   

12.
In order to recycle magnesium ammonium phosphate (MgNH4PO4.6H2O: MAP) obtained from MAP process, which is one of the attractive processes for removal of aqueous ammonium and phosphate from wastewater, ammonium elimination from MAP to magnesium phosphates and ammonium incorporation into the magnesium phosphates have been investigated in the present study. It is confirmed that magnesium hydrogen phosphate (MgHPO4) is favorably obtained from the ammonium elimination from MAP at temperatures greater than 353 K, although magnesium phosphate (Mg3(PO4)2) and magnesium pyrophosphate (Mg2P2O7) have been suggested as possible candidates. Based on the dissolution-precipitation mechanism for the removal of aqueous ammonium with magnesium phosphates, three magnesium phosphates were employed for the removal of aqueous ammonium. The order of the removal rate of the aqueous ammonium was MgHPO4>Mg3(PO4)2>Mg2P2O7, as expected from the solubility of those magnesium phosphates. The removability of the solid obtained from ammonium elimination of MAP is also confirmed. The present results show that MAP can be employed as an advanced material for the removal/recovery of ammonium, although it is generally accepted that an excess of MAP obtained from the wastewater treatment can be only used as a slow-acting fertilizer.  相似文献   

13.
Layered calcium octyl phosphate (CH3(CH2)7OPO3Ca.1.6H2O: CaOP), which is composed of a multilayer alternating bilayer of octyl phosphates and a dicalcium phosphate dihydrate (DCPD)-like phase, was thermally treated in vacuo and the intercalation of n-alkyltrimethylammonium ions into the materials was examined. The octyl groups in the layer were eliminated by outgassing above 250 degrees C to give the amorphous calcium phosphates. Further, the specific surface area was steeply increased and mesopores with a diameter of ca. 2.0 nm were formed. IR results indicated that the surface P-OH groups were generated by outgassing at 250 degrees C. When the CaOP outgassed at 250 degrees C was treated with n-alkyltrimethylammonium ion solutions (carbon number of alkyl group, n=14-18), three XRD peaks reappeared below 2theta=15 degrees and the d-spacing ratio of these peaks was 1:1/2:1/3. These facts indicate that the n-alkyltrimethylammonium ions were intercalated into the amorphous calcium phosphate phases.  相似文献   

14.
Amorphous acidic metal(IV) phosphates of zirconium, titanium and tin have been prepared and hydrogen-exchanged for bivalent Pd, Pt and Ni. These bivalent metals were returned to the zero valent state by reducing them with either hydrogen at 400 °C or with sodium tetrahydroborate at room temperature. The resulting Pd0, Pt0 and Ni0 phosphates were investigated as selective catalysts for heterogeneous hydrogenation of alkenes in solution at normal temperatures and pressures and, for Ni, also in the vapour phase. Quantitative studies on rates of hydrogenation are discussed. The usual methods for preparing metal(IV) phosphates give either crystalline or amorphous solids having low specific surfaces areas. A method has been developed, by which metal(IV) phosphates having large surface areas (lsa) may be prepared easily. These lsa supports take up large amounts of transition metal cations by simple exchange. The enhanced incorporation of Pd, Pt or Ni and increases in surface areas of the phosphate supports have provided some active, selective catalysts. Pd/Ti phosphates were the most active and compared well with commercial Pd on carbon. Ni/Ti phosphate is a very selective catalyst for vapour phase hydrogenation of alkenes and, at slightly higher temperatures, it is an efficient hydrocarbon cracking catalyst.  相似文献   

15.
In this study, a series of poly(divinylbenzene-alkyl methacrylate) monolithic stationary phases, which were prepared by single step in situ polymerization of divinylbenzene and various alkyl methacrylates (butyl-, octyl-, or lauryl-methacrylate), were developed as separation columns of benzophenone compounds for capillary electrochromatography (CEC). In addition to the presence of plenty of benzene moieties, the stationary phases contained long and flexible alkyl groups on the surface. With an increase in the molecular length of alkyl methacrylate, the polymeric monolith, which had higher hydrophobicity, effectively reduced the peak tailing of benzophenones, but a weaker retention was observed. The unusual phenomenon was likely due to the π–π interaction between the aromatic compound and the polymeric material. The usage of longer alkyl methacrylate as reaction monomer limited the retention of aromatic compounds on the stationary phase surface, thus the π–π interaction between them was possibly reduced. Consequently, the retention time of aromatic compounds was markedly decreased with an increase in carbon length of alkyl methacrylate that was carried on the polymeric monolith. Compared to previous reports on polystyrene-based columns in which the peak-tailing problem was reduced by decreasing the benzene moieties on the stationary phase, this study demonstrated that the undesirable retention (peak-tailing) could also be improved by the inclusion of long alkyl methacrylate to the polystyrene-based columns.  相似文献   

16.
Phosphatidylinositol-specific phospholipase C cleaves the phosphodiester bond of phosphatidylinositol to form inositol 1,2-cyclic phosphate and diacylglycerol. This enzyme also accepts a variety of alkyl and aryl inositol phosphates as substrates, making it a suitable model enzyme for studying mechanism of phosphoryl transfer by probing the linear free-energy relationship (LFER). In this work, we conducted a study of Br?nsted-type relationship (log k = beta(lg) pK(a) + C) to compare mechanisms of enzymatic and nonenzymatic reactions, confirm the earlier proposed mechanism, and assess further the role of hydrophobicity in the leaving group as a general acid-enabling factor. The observation of the high negative Br?nsted coefficients for both nonenzymatic (beta(lg) = -0.65 to -0.73) and enzymatic cleavage of aryl and nonhydrophobic alkyl inositol phosphates (beta(lg) = -0.58) indicates that these reactions involve only weak general acid catalysis. In contrast, the enzymatic cleavage of hydrophobic alkyl inositol phosphates showed low negative Br?nsted coefficient (beta(lg) = -0.12), indicating a small amount of the negative charge on the leaving group and efficient general acid catalysis. Overall, our results firmly support the previously postulated mechanism where hydrophobic interactions between the enzyme and remote parts of the leaving group induce an unprecedented negative-charge stabilization on the leaving group in the transition state.  相似文献   

17.
Tributyl phosphate (TBP) and other alkyl phosphates represent a class of persistent organophosphorus compounds of widespread use. Biodegradation of the phosphotriesters is postulated to occur through sequential hydrolytic cleavages via the phosphodiester and monoester intermediates to alcohol and inorganic phosphate (Pi). Immobilized cells of aCitrobacter sp. liberated Pi upon challenge with TBP but the reaction was short-lived. In vitro studies with purified phosphomonoesterase (phosphatase) used31P nuclear magnetic resonance to demonstrate Pi transfer onto ethanol (phosphotransferase activity). This suggested that in vivo the onset of a futile phosphohydrolytic and transphosphorylation cycle would limit the extent of phosphate production. A mutant deficient in the transphosphorylating phosphomonoesterase showed an extended release of Pi under challenge with TBP that was not subject to the complete and premature reaction termination that precluded application of the parent strain to possible industrial processes for alkyl phosphate biodegradation.  相似文献   

18.
Phosphorylated carbohydrates are important intracellular metabolites and thus of prime interest in metabolomics research. Complications in their analysis arise from the existence of structural isomers that do have similar fragmentation patterns in MS/MS and are hard to resolve chromatographically. Herein, we present selective methods for the liquid chromatographic separation of sugar phosphates, such as hexose and pentose phosphates, 2‐ and 3‐phosphoglycerate, dihydroxyacetone phosphate and glyceraldehyde 3‐phosphate, as well as glucosamine 1‐ and 6‐phosphate utilizing mixed‐mode chromatography with reversed‐phase/weak anion‐exchangers and a charged aerosol detector. The best results were obtained when the reversed‐phase/weak anion‐exchanger column was operated under hydrophilic interaction liquid chromatography elution conditions. The effects of various chromatographic parameters were examined and are discussed on the basis of a simple stoichiometric displacement model for explaining ion‐exchange processes. Employed acidic conditions have led to the complete separation of α‐ and β‐anomers of glucose 6‐phosphate at low temperature. The anomers coeluted in a single peak at elevated temperatures (>40°C) (peak coalescence), while at intermediate temperatures on‐column interconversion with a plateau in‐between resolved anomer peaks was observed with apparent reaction rate constants between 0.1 and 27.8×10?4 s?1. Dynamic HPLC under specified conditions enabled to investigate mutarotation of phosphorylated carbohydrates, their interconversion kinetics, and energy barriers for interconversion. A complex mixture of six hexose phosphate structural isomers could be resolved almost completely.  相似文献   

19.
A series of alkyl phosphate esters were synthesized and each of them was a mixture of monophosphate and diphosphate esters in a high or low mono/dimole ratio. The structure of hexadecyl phosphate ester with a low mono/dimole ratio was confirmed by FTIR, 1H NMR, and31P NMR. The surface tensions of these alkyl phosphate esters were analyzed using a surface tensionmeter. The results showed that the critical micelle concentration (CMC) and critical surface tension (γCMC) of phosphate esters with a high mono/di ratio decreased with the increase of alkyl chain length. However, for the phosphate esters with a low mono/di ratio, the CMC, and γCMC decreased initially and increased afterwards with the increase of alkyl chain length. Meanwhile, the butanol and octanol phosphate esters with a high mono/di ratio had higher CMC and γCMC than their low mono/di ones, while the dodecyl and hexadecyl phosphate esters presented an opposite result. The results indicated that the mono- and diphosphate esters in the mixture may have a synergistic effect on the arrangement of molecules.  相似文献   

20.
Alkaline phosphatase (AP) is a trinuclear metalloenzyme that catalyzes the hydrolysis of a broad range of phosphate monoesters to form inorganic phosphate and alcohol (or phenol). In this paper, by using density functional theory with a model based on a crystal structure, the AP‐catalyzed hydrolysis of phosphate monoesters is investigated by calculating two substrates, that is, methyl and p‐nitrophenyl phosphates, which represent alkyl and aryl phosphates, respectively. The calculations confirm that the AP reaction employs a “ping‐pong” mechanism involving two chemical displacement steps, that is, the displacement of the substrate leaving group by a Ser102 alkoxide and the hydrolysis of the phosphoseryl intermediate by a Zn2‐bound hydroxide. Both displacement steps proceed via a concerted associative pathway no matter which substrate is used. Other mechanistic aspects are also studied. Comparison of our calculations with linear free energy relationships experiments shows good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号