首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
A method for the separation of tetrachloroplatinate PtCl42−, and hexachloroplatinate PtCl62−, by solid-phase extraction, using a Dowex 1 × 10 anion exchange resin is proposed. The sequential elution and separation of PtCl42−, and PtCl62− is achieved using selective complexing agents. The eluates, containing Pt(II) and Pt(IV) were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Recoveries of 102% for PtCl42− and 94% for PtCl62− and detection limit of 15 ng g−1 were achieved. Using this method determination of Pt(II) and Pt(IV) in soil samples, spiked with different platinum species was performed. The comparison with GFAAS determination showed a very good agreement.  相似文献   

2.
A novel method for inductively coupled plasma atomic emission spectrometry (ICP-AES) determination of trace amounts of Pt(II), Pd(II) and Rh(III), based on gaseous compounds introduction into the plasma as their diethyldithiocarbamate complexes by electrothermal vaporization (ETV), was developed. At the temperature of 1100 °C, the trace amounts of Pt, Pd and Rh were vaporized into plasma. The factors affecting the formation of the chelates and their vaporization behaviors, such as ashing temperature and time, vaporization temperature and time, pH and the concentration of chelating reagents were studied in detail. Under the optimized conditions, the limits of detection (LODs) (3σ) of Pt, Pd and Rh for tested solutions were 5.4, 1.4 and 0.8 ng ml−1, and for actual sample (auto-catalyst NIST SRM 2557) were 0.27, 0.07 and 0.04 μg g−1, respectively. The relative standard deviations (RSDs) for Pt, Pd and Rh were 1.4, 2.6 and 2.4% (CPt=0.5 μg ml−1, CPd,Rh=0.25 μg ml−1, n=7), respectively. The linear ranges of calibration graphs for Pt, Pd and Rh cover three orders of magnitude. Compared with conventional electrothermal vaporization technique, using the reagent of diethyldithiocarbamate as chemical modifier could not only enhance the analytical sensitivities, but also reduce the vaporization temperature. By combination with a separation/preconcentration step, the proposed method had been successfully applied to the analysis of the artificial seawater, tap water and urine with recoveries ranging from 91 to 106%. The two certified reference material meager platinpalladium ore GBW 07293 and auto-catalyst NIST SRM 2557 was also analyzed for validation, and the determined values obtained were in good agreement with the certified values.  相似文献   

3.
In this contribution, a novel method is described for the determination of platinum metals. The procedure developed employs a carbon paste electrode modified in situ with cationic surfactants of the quaternary ammonium salt type. The pre-concentration step is based on a specific accumulation mechanism involving ion-pair formation; the detection being performed by cathodic scanning in the differential pulse voltammetric mode. Regarding the individual forms of platinum metals, the method has been found convenient for the determination of three heavy platinum metals in the form of Pt(IV), Ir(III) and Os(IV), whereas for the remaining elements (Ru, Rh, and Pd) was almost inapplicable. Platinum metals of the former group can be pre-concentrated in chloride-containing supporting media via PtCl62−, IrCl63− and OsCl62− complex anions, the central atom of each species being fairly reducible during the voltammetric scan. Stripping signals for both platinum and iridium were proportional to the concentration in a range of 1-10 × 10−6 M Pt(IV) and Ir(III); the response for osmium being linear within 0.1-6 × 10−7 M Os(IV) with a detection limit of about 5 × 10−9 mol l−1. During optimisation, special attention was paid to the accumulation mechanism, choice of key experimental conditions, and to interference effects from foreign ions with potentially ion-pairing capabilities (AuCl4, TlCl4, CrO42−, MnO4, SCN, and I). The method elaborated has been tested on both model solutions and real samples of industrial waste water, showing in both cases satisfactory analytical performance.  相似文献   

4.
Biphen(OPi-Pr) and (COD)PtCl2 give Biphen(OPi-Pr)PtCl2 which upon treating with ethyl Grignard forms Biphen(OPi-Pr)PtEt2. The thermal decomposition of Biphen(OPi-Pr)PtEt2 was investigated in the temperature range of 353-383 K. The clean and quantitative formation of the Pt(Ethene) adduct was observed. X-ray structures of a molecule in the solid state of all three reaction products and two further related complexes with phenyl fingers instead of i-Pr have been determined. For the complexes with i-Pr fingers a decisive deviation from a square plane is observed in contrast to the complexes with phenyl fingers. The P-Pt-P angle increases from about 95° in Biphen(OPi-Pr)PtCl2 to about 120° in Biphen(OPi-Pr)Pt(Ethene), forcing the bridging C-C single bond of the biphenyl fragment as near as 4.17 Å to the Pt center. No through-space coupling between the bridging C atoms and the Pt center could be observed in 13C NMR spectroscopy. No bond lengthening of the bridging C-C single bond in the biphenyl fragment was observed in Biphen(OPi-Pr)Pt(Ethene) in comparison to the precursor complexes. The thermal decomposition of Biphen(OPi-Pr)PtEt2 can be described by a first-order kinetic and the activation parameters were determined (temperature range: 353-383 K; ΔH = 173.8 ± 16.2 kJ/mol and ΔS = 104.7 ± 44.1 J/(mol K)). The reaction kinetics were also measured for perdeuterated ethyl groups yielding in a kinetic isotopic effect of 1.56 ± 0.14 which was almost temperature-independent. Selective deuteration at α and β position of the ethyl group, respectively, showed that β-H elimination takes place fast in comparison to the complete thermolysis. In the temperature range of 333-353 K only a scrambling of the deuterium atoms was found without further decomposition (temperature range: 333-353 K; ΔscramH = 76.1 ± 15.2 kJ/mol, ΔscramS = −80.7 ± 45.5 J/(mol K) for Biphen(OPi-Pr)PtEt2-d6). The ethene is not lost during the scrambling process. The scrambling process is connected with a primary KIE decisively larger than 1.56. Biphen(OPi-Pr)Pt(Ethene) exchanges the coordinated ethene with ethene in solution as proven by labeling experiments. Both a dissociative and an associative mechanism could be shown to take place as ethene exchange reaction by means of VT1H NMR spectroscopy via line shape analysis (temperature range: 333-373 K; ΔassH = 26.9 ± 29.6 kJ/mol, ΔassS = −148.0 ± 87.5 J/(mol K), ΔdissH = 86.0 ± 6.5 kJ/mol, ΔdissS = 5.4 ± 17.8 J/(mol K)). The Pt(0) complex formed during the dissociative loss of ethene activates several substrates among them: O2, H2, H2SiPh2 via Si-H activation, MeI presumably via forming a cationic methyl adduct and ethane via C-H activation but it was proven that the bridging C-C single bond of the biphenyl fragment is not even temporarily broken. The materials were characterized by means of 1H NMR, 13C NMR, 31P NMR, 195Pt NMR, EA, MS, IR, X-ray analysis and polarimetric measurement where necessary.  相似文献   

5.
Xiujie Bian  E. Jin 《Talanta》2010,81(3):813-83
Pt/polypyrrole (PPy) hybrid hollow microspheres were successfully prepared by wet chemical method via Fe3O4 template and evaluated as electrocatalysts for the reduction of hydrogen peroxide. The as-synthesized products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD), inductive coupled plasma emission spectrum (ICP) and Fourier-transform infrared spectra (FTIR) measurements. The results exhibited that ultra-high-density Pt nanoparticles (NPs) were well deposited on the PPy shell with the mean diameters of around 4.1 nm. Cyclic voltammetry (CV) results demonstrated that Pt/PPy hybrid hollow microspheres, as enzyme-less catalysts, exhibited good electrocatalytic activity towards the reduction of hydrogen peroxide in 0.1 M phosphate buffer solution (pH = 7.0). The composite had a fast response of less than 2 s with linear range of 1.0-8.0 mM and a relatively low detection limit of 1.2 μM (S/N = 3). The sensitivity of the sensor for H2O2 was 80.4 mA M−1 cm−2.  相似文献   

6.
Inductively coupled plasma mass spectrometry (ICP-MS) and electrospray ionization mass spectrometry (ESI-MS) were used as complementary techniques to provide element and molecular information for aminocarboxylic lead species including [Pb(NTA)]1−, [Pb(HEDTA)]1−, [Pb(EDTA)]2− and [Pb(DTPA)]3−. ESI-MS was used to initially confirm the formation of lead aminocarboxylic complexes in solution and subsequently anion-change chromatography coupled with ICP-MS was used to speciate these complexes using a mobile phase containing 30 mM NH4H2PO4 at pH of 8.0. However, [Pb(NTA)]1− was not observed during chromatographic separation due to its poor stability. The species [Pb(HEDTA)]1−, [Pb(EDTA)]2− and [Pb(DTPA)]3− were separated within 15 min with reasonable resolution and detection limits ranging from 0.05 to 0.2 μg L−1 with simple direct injection of sample. The proposed method was used to speciate aminocarboxylic lead complexes in soil solution.  相似文献   

7.
Ion chromatography (IC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was systematically investigated for determining the speciation of chromium in environmental samples. Firstly, the stability of complexes formed by Cr(III) with various aminopolycarboxylic acids was studied by electrospray ionization mass spectrometry (ESI-MS). The results showed that [Cr(EDTA)] was stable in solution. Secondly, various mobile phases were examined to separate Cl from chromium species by IC to avoid Cl interference. The separation of [Cr(EDTA)] and Cr(VI) was achieved on a new anion-exchange column (G3154A/102) using a mobile phase containing 20 mM NH4NO3 and 10 mM NH4H2PO4 at pH 7.0 without Cl interference. Detection limits for chromium species were below 0.2 μg/L with a direct injection of sample and without prior removal of interferences from the matrix. Finally, the proposed method was used for the determination of chromium species in contaminated waters.  相似文献   

8.
This work demonstrates the use of amino functionalized Mg-phyllosilicate clay/Nafion nanocomposite film embedded with Pt nanoparticles (Pt/AC/N) for catalyzing oxygen reduction reaction (ORR) in sulphuric acid medium. Pt/AC/N nanocomposite films were surface characterized using transmission electron microscope. Cyclic and linear scan voltammetry studies were carried out under hydrodynamic conditions taking rotating-ring disc electrode (RRDE) as the working electrode. The effects of clay content, Pt mass loading, electrode rotation rate, and temperature on the ORR kinetics were studied. The Tafel slopes were found to vary between 118 and 126 mV dec−1 indicating a good ORR kinetics. The exchange current density values calculated after mass transfer correction ranged from 5.8 × 10−7 to 2.4 × 10−6 A cm−2. From the RRDE disc currents, Koutecky-Levich plots were constructed and the ORR mechanism was found to follow a four electron path with minimum H2O2 formation of ∼1.6%. The effect of temperature on ORR kinetics was found at 25, 40, and 50 °C. The energy of activation calculated to be 7.68 kJ mol−1 and comparable to the standard Pt/C catalyzed ORR systems.  相似文献   

9.
Hong Wu  Yan Jin  Shuping Bi 《Talanta》2007,71(4):1762-1768
The existence of dimethylselenium (DMSe) and dimethyldiselenium (DMDSe) in some environmental samples can cause serious interference on Se(IV) determination by hydride generation atomic fluorescence spectrometry (HG-AFS) due to their contribution on HG-response. A flow injection separation and preconcentration system coupled to HG-AFS was therefore developed by on-line coprecipitation in a knotted reactor (KR) for eliminating interference subjected from organoselenium. The sample, spiked with lanthanum nitrate, was merged with an ammonium buffer solution (pH 8.8), which promoted coprecipitation of Se(IV) and quantitative collection by 150 cm PTFE KR. DMSe and DMDSe, however, were unretained and expelled from the KR. An air flow was introduced to remove the residual solution from the KR, then a 1.2 mol l−1 HCl was pumped to dissolve the precipitates and merge with KBH4 solution for HG-AFS detection. The interference of DMSe and DMDSe on the Se(IV) determination by conventional HG-AFS and its elimination by the developed separation and preconcentration system were evaluated. With optimal experimental conditions and with a sample consumption of 12.0 ml, an enhancement factor of 18 was obtained at a sample frequency of 24 h−1. The limit of detection was 0.014 μg l−1 and the precision (R.S.D.) for 11 replicate measurements of 1.0 μg l−1 Se(IV) was 2.5%. The developed method was successfully applied to the determination of inorganic selenium species in a variety of natural water samples.  相似文献   

10.
This work demonstrated the feasibility of mercury speciation analysis by anion exchange chromatographic separation with inductively coupled plasma mass spectrometry detection. For the first time, by complexing with the mobile phase containing 3-mercapto-1-propanesulfonate into negatively charged complexes, fast separation of inorganic mercury (Hg2+), monomethylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg) was achieved within 5 min on a 12.5-mm strong anion exchange column. The detection limits for Hg2+, MeHg, EtHg and PhHg were 0.008, 0.024, 0.029 and 0.034 μg L−1, respectively. The relative standard deviations of peak height and peak area (5.0 μg L−1 for each Hg species) were all below 3%. The determined contents of Hg2+, MeHg and total Hg in a certified reference material of fish tissue by the proposed method were in good accordance with the certified values with satisfactory recoveries. The relative errors for determining MeHg and total mercury were −2.4% and −1.2%, respectively, with an acceptable range for spike recoveries of 94–101%. Mercury speciation in 11 fish samples were then analyzed after the pretreated procedure. The mercury contents in all fish samples analyzed were found compliant with the criteria of the National Standards of China.  相似文献   

11.
Within this study, coordination properties of the cyclic diphosphine 1,2,3,4-tetrahydro-1,4-diphenyl-1,4-benzodiphosphinine (bedip) are investigated, through the preparation of neutral and cationic Pt(II), Pt(IV) and Pd(II) complexes. The diphosphine acts as bridging ligand in the neutral Pt(II) and Pd(II) complexes, affording [MX(CH3)(μ-bedip)]2 (X = Cl, Br, I, CH3) species. Chelation is observed in all the remaining complexes. The molecular structures of [PtX(CH3)(μ-bedip)]2 (X = Br, I) and [PtI(CH3)3(bedip)] are also determined.  相似文献   

12.
Pt nanoclusters were deposited in polypyrrole (PPy) nanowires by cyclic voltammetry method, fabricating a PPy-Pt nanocomposite on glassy carbon electrode (PPy-Pt/GCE). The electrocatalytic reduction of nitrite at PPy-Pt/GCE has been investigated using 0.5 M H2SO4 solution. The sensor exhibited excellent electrocatalytic activity toward nitrite reduction. In acidic medium, the cyclic voltammetry at 20 mV s− 1 gave a nitrite reduction peak at − 0.124 V with 0.566 μA μM− 1 current sensitivity in the range of 5.0 × 10− 7-1.0 × 10− 3 M. The detection limit was 1.5 × 10− 7 M (s/n = 3). The proposed method was successfully applied in the detection of nitrite in real water samples and obtained satisfactory results. The PPy-Pt composite modified electrode had good storage stability, reproducibility and anti-interference ability.  相似文献   

13.
A vapor generation procedure to determine Cd by atomic fluorescence spectrometry (AFS) has been established. Volatile species of Cd are generated by following reaction of acidified sample containing Fe(II) and l-cysteine (Cys) with sodium tetrahydroborate (NaBH4). The presence of 5 mg L−1 Fe(II) and 0.05% m/v Cys improves the efficiency of Cd vapor generation substantially about four-fold compared with conventional thiourea and Co(II) system. Three experiments with different mixing sequences and reaction times are designed to study the reaction mechanism. The results document that the stability of Cd(II)–Cys complexes is better than Cys–THB complexes (THB means NaBH4) while the Cys–THB complexes have more contribution to improve the Cd vapor generation efficiency than Cd(II)–Cys complexes. Meanwhile, the adding of Fe(II) can catalyze the Cd vapor generation. Under the optimized conditions, the detection limit of Cd is 0.012 μg L−1; relative standard deviations vary between 0.8% and 5.5% for replicate measurements of the standard solution. In the presence of 0.01% DDTC, Cu(II), Pb(II) and Zn(II) have no significant influence up to 5 mg L−1, 10 mg L−1and 10 mg L−1, respectively. The accuracy of the method is verified through analysis of the certificated reference materials and the proposed method has been applied in the determination of Cd in seafood and rice samples.  相似文献   

14.
A flow solid phase extraction procedure based on biosorption of Pt(IV) and Pd(II) on Aspergillus sp. immobilized on cellulose resin Cellex-T was proposed for the separation and preconcentration of Pt and Pd before their determination by electrothermal atomic absorption spectrometry (ETAAS). The analytical conditions including sample pH, eluent type, flow rates of sample and eluent solutions were examined. The analytes were selectively retained on the biosorbent in acidic medium (pH 1) and subsequently eluted from the column with 1 mL of thiourea solution (0.25 mol L− 1 thiourea in 0.3 mol L− 1 HCl). The reproducibility of the procedure was below 5%. The limit of detection of the method was 0.020 ng mL− 1 for Pt and 0.012 ng mL− 1 for Pd. The method validation was performed by analysis of certified reference materials BCR-723 (tunnel dust) and SARM-76 (platinum ore). The developed separation procedure was applied to the determination of Pt and Pd in road dust samples by ETAAS.The applied biosorbent is characterized by high sorption capacity: 0.47 mg g− 1 for Pt and 1.24 mg g− 1 for Pd.  相似文献   

15.
The synthesis, structure and spectroscopy of a series of luminescent orthometalated square planar platinum(II) complexes are reported. Reaction of K2PtCl4 with one mole equivalent of 2-phenylpyridine (ppyH) in 2-ethoxyethanol and water (1:1 ratio) resulted in the formation of chloro-bridged dimeric precursor [Pt2(μ-Cl)2(ppy)2], which on further reactions with various anionic one-, two- and three-atom ancillary ligands, having O/N/S donors, yielded mono- and bi-nuclear platinum(II) complexes. Platinum(III) complexes of composition [Pt2Cl2(μ-Epy)2(ppy)2] have been isolated with pyE (E = O or S) ligands. These complexes have been characterized by elemental analysis, NMR (1H, 31P, 195Pt) and absorption spectroscopy. The complexes [Pt2(μ-NN)2(ppy)2] (NN = pyrazole and 3,5-dimethylpyrazole); [Pt(SS)(ppy)] (SS = ethylxanthate and diisopropyldithiophosphate); [Pt2Cl2(μ-Epy)2(ppy)2] (Epy = 2-pyridinol {Opy} and 2-mercaptopyridine {Spy}) and [PtCl(ppy)(PhNC(Me)NHPh)] have been structurally characterized by X-ray crystallography.  相似文献   

16.
A method was developed for the speciation analysis of the oxyanions of As(III), As(V), Cr(VI), Mo(VI), Sb(III), Sb(V), Se(IV), Se(VI) and V(V) in leachates from cement-based materials, based on anion-exchange HPLC coupled with ICP-MS. The method was optimized in a two-step multivariate approach: the effect of sample pH and mobile phase composition on resolution, peak symmetry and analysis time was studied. Optimum conditions were then identified for the significant experimental factors by studying their interdependence. A mobile phase composition of 20 mM ammonium nitrate, 50 mM ammonium tartrate and pH 9.5 was found to be a compromise optimum for the separation of the target analytes using isocratic elution. The optimum condition provided separation of the analytes in less than 6 min, at a mobile phase flow rate of 1.0 mL/min. The signal intensities of the analytes were improved by adding 1% methanol to the mobile phase. The limit of detection of the method was in the range 0.2–2.2 μg/L for the various species. The effect of sample constituents was studied using spiked concrete leachates. The method was used to determine the target oxyanionic species in leachates generated from a concrete material in the pH range 3.5–12.4; CrO42−, MoO42− and VO43− were detected in most of the leachates.  相似文献   

17.
Jiankun Duan 《Talanta》2009,79(3):734-738
A flow injection online speciation procedure by using micro-column packed with Cu(II) loaded nanometer-sized Al2O3 coupled to inductively coupled plasma mass spectrometry (ICP-MS) for the separation and determination of selenomethionine (SeMet) and selenocystine (SeCys2) has been developed. The main factors affecting the separation and preconcentration of SeMet and SeCys2 including pH value, sample flow rate, eluent concentration, eluent volume and flow rate, and interfering ions have been investigated. It was found that SeCys2 could be selectively retained by micro-column packed with Cu(II) loaded nanometer-sized Al2O3 at pH 4.0, and the retained SeCys2 could be eluted by 1.0 mol L−1 HNO3, while SeMet was not retained and passed through the micro-column directly at this pH. Both SeMet and SeCys2 could be quantitatively adsorbed by the micro-column at pH 9.0, and the retained SeMet and SeCys2 could be easily eluted with 1.0 mol L−1 HNO3. The content of SeMet was obtained by subtracting the SeCys2 from the total content of seleno amino acids. With the enrichment factor of 7.8 and 7.7, the limits of detection (LODs) for SeMet and SeCys2 were found to be 24 pg Se mL−1 and 21 pg Se mL−1, respectively. The relative standard deviations (RSDs) for SeCys2 and SeMet with seven replicate determinations of 1.0 ng mL−1 SeMet and SeCys2, were 2.1% and 1.6%, respectively, the sampling frequency of 8 h−1 was obtained. The proposed method was applied to the speciation of SeMet and SeCys2 in selenized yeast, human urine and serum with satisfactory results.  相似文献   

18.
Electrochemical behavior of hexafluoroniobate (Nb(V)F6), heptafluorotungstate (W(VI)F7), and oxotetrafluorovanadate (V(V)OF4) anions has been investigated in N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (BMPyrTFSA) ionic liquid at 298 K by means of cyclic voltammetry and chronoamperometry. Cyclic voltammograms at a Pt electrode showed that Nb(V)F6 anion is reduced to Nb(IV)F62− by a one-electron reversible reaction. Electrochemical reductions of W(VI)F7 and V(V)OF4 anions at a Pt electrode are quasi-reversible and irreversible reactions, respectively, according to cyclic voltammetry. The diffusion coefficients of Nb(V)F6, W(VI)F7 and V(V)OF4 determined by chronoamperometry are 1.34 × 10−7, 7.45 × 10−8 and 2.49 × 10−7 cm2 s−1, respectively. The Stokes radii of Nb(V)F6, W(VI)F7, and V(V)OF4 in BMPyrTFSA have been calculated to be 0.23, 0.38, and 0.12 nm, from the diffusion coefficients and viscosities obtained.  相似文献   

19.
Wu Y  Jiang Z  Hu B 《Talanta》2005,67(4):854-861
A simple and selective method of flow injection (FI) using a micro-column packed with quinine modified resin as solid phase extractant has been developed for preconcentration and separation of trace amount of vanadium(V) and vanadium(IV) in water samples, followed by determination with fluorination assisted electrothermal vaporization (FETV)-inductively coupled plasma optical emission spectrometry (ICP-OES). At pH 3 ∼ 3.8, the modified resin is selective towards V(V) and almost not towards V(IV), while, V(IV) could be quantitatively adsorbed by the modified resin at pH 5 ∼ 7. The two vanadium species adsorbed by modified resin could be readily desorbed quantitatively with 0.3 ml of 0.5 mol l−1 HCl. Both vanadium species in elution were then determined by ETV-ICP-OES with the use of polytetrafluoroethylene (PTFE) as chemical modifier. Effects of acidity, sample flow rate, concentration of elution solution and interfering ions on the recovery of the analytes have been systematically investigated. Under the optimal conditions, the adsorption capacities of the quinine modified resin for V(V) and V(IV) are 7.6 and 8.0 mg g−1, respectively. The detection limit (3σ) of V is 0.072 ng ml−1 for FETV-ICP-OES and 0.56 pg ml−1 for FETV-ICP-MS with enrichment factor of 62.5, and the relative standard deviation (R.S.D.) is 4.9% (n = 9, C = 0.2 μg ml−1) and 3.8% (n = 9, C = 1.0 ng ml−1), respectively. The proposed method has been applied to the determination of trace V(V) and V(IV) in different water samples, and the recoveries of V(V) and V(IV) are 100 ± 10%. In order to further verify the accuracy of the developed method, FETV-ICP-MS was employed to analyze the vanadium species in water samples after separation/preconcentration, and analytical results are in good agreement with that obtained by the proposed method. The developed method was also applied to the analysis of the total V in GBW07401 soil certified reference material and in GBW07605 tea leaves certified reference material, and the determined values coincided with the certified values very well.  相似文献   

20.
A coupled capillary column system was developed for the qualitative and quantitative determination of melamine with isotope internal standard in dairy products by gas chromatography/mass spectrometry (GC/MS) without derivatization. A 30 m of DB-5ms ((5%-phenyl)-methylpolysiloxane, 0.25 mm i.d., 0.25 μm df) coupled with a 1.5 m of Innowax (polyethylene glycol, 0.32 mm i.d., 0.25 μm df) by a quartz capillary column connector was introduced as separation column. Three advantages were discussed for the coupled system. The sample was fortified with a ring-labeled 13C315N3-melamine as an isotope internal standard and extracted by 1% of trichloroacetic acid aqueous solution. 2.2% of lead acetate solution was then added to deposit protein in the sample matrix. After purification by cation exchange cartridge, the sample solution was directly injected and detected by GC/MS. A six-point calibration curve ranging from 0.05 to 2 mg kg−1 of melamine in sample was used to establish instrument response. The recovery was 93.9-102% with relative standard deviation from 3.1 to 8.7% when isotope internal standard used. The calculated method detection limit was 0.01 mg kg−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号