首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The literature about applications of high-resolution continuum source atomic absorption spectrometry (HR-CS AAS) with electrothermal atomization is reviewed. The historic development of HR-CS AAS is briefly summarized and the main advantages of this technique, mainly the ‘visibility’ of the spectral environment around the analytical line at high resolution and the unequaled simultaneous background correction are discussed. Simultaneous multielement CS AAS has been realized only in a very limited number of cases. The direct analysis of solid samples appears to have gained a lot from the special features of HR-CS AAS, and the examples from the literature suggest that calibration can be carried out against aqueous standards. Low-temperature losses of nickel and vanadyl porphyrins could be detected and avoided in the analysis of crude oil due to the superior background correction system. The visibility of the spectral environment around the analytical line revealed that the absorbance signal measured for phosphorus at the 213.6 nm non-resonance line without a modifier is mostly due to the PO molecule, and not to atomic phosphorus. The future possibility to apply high-resolution continuum source molecular absorption for the determination of non-metals is discussed.  相似文献   

2.
The artifacts created in the measurement of phosphorus at the 213.6-nm non-resonance line by electrothermal atomic absorption spectrometry using line source atomic absorption spectrometry (LS AAS) and deuterium lamp background correction (D2 BC) have been investigated using high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). The absorbance signals and the analytical curves obtained by LS AAS without and with D2 BC, and with HR-CS AAS without and with automatic correction for continuous background absorption, and also with least-squares background correction for molecular absorption with rotational fine structure were compared. The molecular absorption due to the suboxide PO that exhibits pronounced fine structure could not be corrected by the D2 BC system, causing significant overcorrection. Among the investigated chemical modifiers, NaF, La, Pd and Pd + Ca, the Pd modifier resulted in the best agreement of the results obtained with LS AAS and HR-CS AAS. However, a 15% to 100% higher sensitivity, expressed as slope of the analytical curve, was obtained for LS AAS compared to HR-CS AAS, depending on the modifier. Although no final proof could be found, the most likely explanation is that this artifact is caused by a yet unidentified phosphorus species that causes a spectrally continuous absorption, which is corrected without problems by HR-CS AAS, but which is not recognized and corrected by the D2 BC system of LS AAS.  相似文献   

3.
The literature on the determination of Tl in environmental samples using electrothermal atomization (ETA) and vaporization (ETV) techniques has been reviewed with special attention devoted to potential interferences and their control. Chloride interference, which is due to the formation of the volatile monochloride in the condensed phase, is the most frequently observed problem. Due to its high dissociation energy (88 kcal/mol), TlCl is difficult to dissociate in the gas phase and is easily lost. The best means of controlling this interference in ETA is atomization under isothermal conditions according to the stabilized temperature platform furnace concept, and the use of reduced palladium as a modifier. An alternative approach appears to be the ‘fast furnace’ concept, wherein both the use of a modifier and the pyrolysis stage are omitted. This concept requires an efficient background correction system, and high-resolution continuum-source atomic absorption spectrometry (HR-CS AAS) appears to offer the best results. This chloride interference can also cause significant problems when ETV techniques are used. Among the spectral interferences found in the determination of thallium are those due to Pd, the most efficient modifier, and Fe, which is frequently found at high concentrations in environmental samples. Both interferences are due to nearby atomic lines, and are observed only when deuterium background correction and relatively high atomization temperatures are used. A more serious spectral interference is that due to the molecular absorption spectrum of SO2, which has a maximum around the Tl line and exhibits a pronounced rotational fine structure. HR-CS AAS again showed the best performance in coping with this interference.  相似文献   

4.
The literature about direct solid sample analysis of the past 10–15 years using electrothermal atomic absorption spectrometry has been reviewed. It was found that in the vast majority of publications aqueous standards were reported as having been used for calibration after careful program optimization. This means the frequently expressed claim that certified reference materials with a matrix composition and analyte content close to that of the sample have to be used for calibration in solid sample analysis is not confirmed in the more recent literature. There are obviously limitations, and there are examples in the literature where even calibration with certified reference materials did not lead to accurate results. In these cases the problem is typically associated with spectral interferences that cannot be corrected properly by the systems available for conventional line source atomic absorption spectrometry, including Zeeman-effect background correction. Using high-resolution continuum source atomic absorption spectrometry, spectral interferences become visible owing to the display of the spectral environment at both sides of the analytical line at high resolution, which makes program optimization straightforward. Any spectrally continuous background absorption is eliminated automatically, and even rapidly changing background absorption does not cause any artifacts, as measurement and correction of background absorption are truly simultaneous. Any kind of fine-structured background can be eliminated by “subtracting” reference spectra using a least-squares algorithm. Aqueous standards are used for calibration in all published applications of high-resolution continuum source atomic absorption spectrometry to direct solid sample analysis. This contribution is based on a presentation given at the Colloquium for Analytical Atomic Spectroscopy (CANAS ‘07) held March 18–21, 2007 in Constance, Germany.  相似文献   

5.
High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) has been used to investigate spectral and non-spectral interferences found with a conventional line source atomic absorption spectrometer in the determination of aluminum in pharmaceutical products containing elevated iron and sugar concentrations. A transversely heated graphite furnace was used as the atomizer in both spectrometers. The two most sensitive aluminum lines at 309.3 nm and 396.2 nm were investigated and it was found that an iron absorption line at 309.278 nm, in the vicinity of the aluminum line at 309.271 nm, could be responsible for some spectral interference. The simultaneous presence of iron and the organic components of the matrix were responsible for radiation scattering, causing high continuous and also structured background absorption at both wavelengths. The aluminum and iron absorption could not be separated in time, i.e., the iron interference could not be eliminated by optimizing the graphite furnace temperature program. However, an interference-free determination of aluminum was possible carrying out the measurements with HR-CS AAS at 396.152 nm after applying least squares background correction for the elimination of the structured background. Analytical working range and other figures of merit were determined and are presented for both wavelengths using peak volume registration (center pixel ± 1) and the center pixel only. Limits of detection and characteristic masses ranged from 1.1 to 2.5 pg and 13 to 43 pg, respectively. The method was used for the determination of the aluminum contamination in pharmaceutical formulations for iron deficiency treatment, which present iron concentrations from 10 to 50 g l− 1. Spike recoveries from 89% to 105% show that the proposed method can be satisfactorily used for the quality control of these formulations.  相似文献   

6.
Several sample preparation methods have been investigated for the direct determination of nickel in crude oil using graphite furnace atomic absorption spectrometry (GF AAS). Xylene was found unsuitable as solvent because of the poor long-term stability of the solutions and the resulting contamination of the equipment. Isobutyl methyl ketone (IBMK) solutions exhibited better stability, but the sensitivity of the organic nickel salt used for the standard solutions showed a high day-to-day variability. An oil-in-water emulsion using Triton X-100 as surfactant gave the best results. Using high-resolution continuum-source (HR-CS) GF AAS, it could be observed that up to 50% of the nickel in crude oil, most likely low molecular weight nickel porphyrins, were lost already at pyrolysis temperatures >400 °C, whereas the rest of the nickel as well as the nickel standard were stable up to 1300 °C. The nickel absorption at a secondary line at 232.138 nm was recorded simultaneously with that at the primary line at 232.003 nm, expanding the dynamic working range by an order of magnitude. The best characteristic mass obtained was m0=27 pg and the limit of detection was around 0.07 μg g−1 Ni in oil, based on an emulsion of 2 g oil in 10 ml. The accuracy of the procedure was verified by analyzing the certified reference material (CRM) NIST SRM 1634c, Trace Metals in Residual Fuel Oil.  相似文献   

7.
The use of ultrasonic nebulization (USN) with desolvation system for sample introduction in flame atomic absorption spectrometry (F AAS) and flame furnace atomic absorption spectrometry (FF AAS) with a nickel tube is described. Polytetrafluorethylene (PTFE) adaptors were built to replace the pneumatic nebulizer for USN-F AAS measurements. For USN-FF AAS analysis, an alumina injector allowed the direct introduction of the dry aerosol into the nickel tube. The analytical performance of both systems is shown for Ag, Bi, Cd, Cr, Cu, Mn, Pb, Sb, Se, Tl and Zn. The results demonstrate that a sensitivity gain of up to 39 times can be achieved using USN-FF AAS, mainly due to the increase in residence time and to the absence of dilution of the analyte by the flame gases, as the atomization takes place inside the nickel tube. However, elements that require higher atomization temperatures, such as Cr and Mn, are more efficiently determined using USN-F AAS. To evaluate the accuracy of the proposed methods for the determination of trace elements, five certified reference samples were analyzed, and good agreement was, in general, achieved between certified and determined values at a 95% confidence level. The relative standard deviation was frequently below 5%, demonstrating good precision, particularly for USN-FF AAS. In this sense, coupling of USN with F AAS and especially with FF AAS has proved to be simple, safe, with high precision and good accuracy, also maintaining some of the most important features of F AAS, such as the high analytical frequency and the low running cost.  相似文献   

8.
This work describes the development of a method to determine cadmium in coal, in which iridium is used as a permanent chemical modifier and calibration is performed against aqueous standards by high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). This new instrumental concept makes the whole spectral environment in the vicinity of the analytical line accessible, providing a lot more data than just the change in absorbance over time available from conventional instruments. The application of Ir (400 g) as a permanent chemical modifier, thermally deposited on the pyrolytic graphite platform surface, allowed pyrolysis temperatures of 700 °C to be used, which was sufficiently high to significantly reduce the continuous background that occurred before the analyte signal at pyrolysis temperatures <700 °C. Structured background absorption also occurred after the analyte signal when atomization temperatures of >1600 °C were used, which arose from the electron-excitation spectrum (with rotational fine structure) of a diatomic molecule. Under optimized conditions (pyrolysis at 700 °C and atomization at 1500 °C), interference-free determination of cadmium in seven certified coal reference materials and two real samples was achieved by direct solid sampling and calibrating against aqueous standards, resulting in good agreement with the certified values (where available) at the 95% confidence level. A characteristic mass of 0.4 pg and a detection limit of 2 ng g–1, calculated for a sample mass of 1.0 mg coal, was obtained. A precision (expressed as the relative standard deviation, RSD) of <10% was typically obtained when coal samples in the mass range 0.6–1.2 mg were analyzed.Dedicated to the memory of Wilhelm Fresenius  相似文献   

9.
The determination of osmium in waste water by electrothermal atomic absorption spectrometry (AAS) with a graphite furnace atomiser has been investigated. The atomisation characteristics of osmium on the atomiser were found to result in optimal ashing and atomisation temperatures of 300–500 and 3180 °C, respectively.The characteristic mass (the mass of element giving 0.0044 abs.) of osmium after optimization was found to be 1.6ng, which is better than obtained with flame AAS and ultraviolet/visible (UV) absorption spectrophotometry. The detection limit (s/n = 3) was 3.6ng (or 0.36 (g ml–1). The relative std. deviation obtained with graphite furnace AAS was 3.0%.The interference caused by large amounts of common cations and anions in waste water were evaluated and thiourea as matrix modifier was shown to be able to eliminate many interferences. The recovery of osmium spiked in waste water was considered almost satisfactory at the 1–50 g ml–1 range and the results were shown to well agree with the analytical values obtained by UV absorption spectrophotometry.  相似文献   

10.
A new procedure for the preconcentration of trace amounts of free Pb and Cd by disposable pipette extraction (DPX) is proposed herein. Recycled cork is used as a biosorbent and the procedure is completely free of organic solvents. The cork was reduced to a powder and characterized by scanning electron microscopy. Several parameters that influence the preconcentration of Pb and Cd with DPX-cork, such as the sample pH, number of extraction cycles, biosorbent mass, and percentage of acid in the desorption step, were studied. The tolerance of DPX-cork with respect to 10 potential interfering ions was also evaluated. Coupled with the high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) technique, the sample preparation method allowed the analytical limits required for quality control (according to the permitted limits established by legislation) to be obtained. The limits of detection for the extraction of a 3.5-mL water sample were 200?ng L?1 for Pb and 100?ng L?1 for Cd. The relative standard deviations were around 7.5% for Pb and 8.0% for Cd. The optimized method was successfully applied to the determination of Cd and Pb in two certified reference materials (water and wastewater) and five water samples (collected from a mangrove, a creek, and the sea).  相似文献   

11.
钨丝在原子吸收光谱分析中的应用   总被引:1,自引:0,他引:1  
随着原子化器和检测器的小型化,钨丝原子吸收光谱分析仪在便携式分析仪器方面显示了很大的潜力。本文主要评述了近年来钨丝在电热原子吸收光谱分析中的应用,引用文献49篇。  相似文献   

12.
The literature about the investigation of molecular spectra of phosphorus, sulfur and the halogens in flames and furnaces, and the use of these spectra for the determination of these non-metals has been reviewed. Most of the investigations were carried out using conventional atomic absorption spectrometers, and there were in essence two different approaches. In the first one, dual-channel spectrometers with a hydrogen or deuterium lamp were used, applying the two-line method for background correction; in the second one, a line source was used that emitted an atomic line, which overlapped with the molecular spectrum. The first approach had the advantage that any spectral interval could be accessed, but it was susceptible to spectral interference; the second one had the advantage that the conventional background correction systems could be used to minimize spectral interferences, but had the problem that an atomic line had to be found, which was overlapping sufficiently well with the maximum of the molecular absorption spectrum. More recently a variety of molecular absorption spectra were investigated using a low-resolution polychromator with a CCD array detector, but no attempt was made to use this approach for quantitative determination of non-metals. The recent introduction and commercial availability of high-resolution continuum source atomic absorption spectrometers is offering completely new possibilities for molecular absorption spectrometry and its use for the determination of non-metals. The use of a high-intensity continuum source together with a high-resolution spectrometer and a CCD array detector makes possible selecting the optimum wavelength for the determination and to exclude most spectral interferences.  相似文献   

13.
The determination of cadmium (Cd) in fertilizers is of major interest, as this element can cause growth problems in plants, and also affect animals and humans. High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) with charge-coupled device (CCD) array detection overcomes several of the limitations encountered with conventional line source AAS, especially the problem of accurate background measurement and correction. In this work an analytical method has been developed to determine Cd in fertilizer samples by HR-CS GF AAS using slurry sampling. Both a mixture of 10 μg Pd + 6 μg Mg in solution and 400 μg of iridium as permanent modifier have been investigated and aqueous standards were used for calibration. Pyrolysis and atomization temperatures were 600 °C and 1600 °C for the Pd-Mg modifier, and 500 °C and 1600 °C for Ir, respectively. The results obtained for Cd in the certified reference material NIST SRM 695 (Trace Elements in Multi-Nutrient Fertilizer) of 16.7 ± 1.3 μg g−1 and 16.4 ± 0.75 μg g−1 for the Pd-Mg and Ir modifier, respectively, were statistically not different from the certified value of 16.9 ± 0.2 μg g−1 on a 95% confidence level; however, the results obtained with the Ir modifier were significantly lower than those for the Pd-Mg modifier for most of the samples. The characteristic mass was 1.0 pg for the Pd-Mg modifier and 1.1 pg Cd for the Ir modifier, and the correlation coefficients (R2) of the calibration were > 0.99. The instrumental limits of detection were 7.5 and 7.9 ng g−1, and the limits of quantification were 25 and 27 ng g−1 for Pd-Mg and Ir, respectively, based on a sample mass of 5 mg. The cadmium concentration in the investigated samples was between 0.07 and 5.5 μg g−1 Cd, and hence below the maximum value of 20 μg g−1 Cd permitted by Brazilian legislation.  相似文献   

14.
A theoretical analysis is made of the effect of analytical line broadening and of non-absorbable radiation in the light source on the shape of concentration curves in Zeeman graphite furnace atomic absorption spectrometry. These results have been used in a systematic study of the effect of spectrometer slit width and hollow-cathode lamp (HCL) current on linearization of calibration graphs for 11 elements: Ag, Au, Bi, Cd, Co, Cu, Fe, Mn, Ni, Pb, and Sb. The effectiveness of linearization throughout the analytical range covered was estimated experimentally on series of 25–30 solutions. Three solutions in each series were used as standards for constructing the calibration graph, the others serving to evaluate the linearization effectiveness. Increasing the slit width and decreasing the HCL current compared to the standard measurement conditions have permitted us to reach a sufficiently high effectiveness of linearization for all the elements studied, with the exception of Ni. The maximum deviation of experimental points from the linear graph under optimum conditions does not exceed 6%. The effect of the Δ parameter used in the computational algorithm on linearization effectiveness is investigated.  相似文献   

15.
A synopsis of the organolead studies performed at our University is given. The different environmental applications such as air, wet atmospheric deposition and dust are summarized and the analytical characteristics of the extraction/derivatization/gas chromatography—atomic absorption spectrometry methodology for the species specific determination of ionic alkyllead species are described.  相似文献   

16.
Trace impurities of Cd, Cu and Pb were determined in alumina based catalysts using direct solid sampling graphite furnace atomic absorption spectrometry (DSS-GF AAS). The analyzed catalysts are widely used in petrochemical processes. The following analytical parameters were evaluated: pyrolysis and atomization temperatures, feasibility of calibration with aqueous solutions, the necessity for palladium as chemical modifier and the sample mass introduced into the atomizer. Test samples between 0.05 and 8.5 mg were used. Palladium was investigated as chemical modifier but no improvement in analytical performance was obtained and its use was considered unnecessary for all elements. The results obtained by DSS-GF AAS were compared with those of inductively coupled plasma optical emission spectrometry (ICP OES) and also with conventional solution analysis by GF AAS (Sol-GF AAS). Characteristic masses were 1.4, 9 and 20 pg, for Cd, Cu and Pb, respectively. Using DSS-GF AAS the relative standard deviation was always less than 10% and the results agreed with those obtained by Sol-GF AAS and ICP OES. Calibration using aqueous solutions showed good linearity within the working range (R2 better than 0.99). Limits of detection (3σ, n = 10) for Cd, Cu and Pb using the proposed procedure were 0.2, 22, and 1.2 ng g− 1, respectively.  相似文献   

17.
In high-resolution continuum source atomic absorption spectrometry (HR-CS AAS) with a pixel detector, such as a charge-coupled device array for signal registration, the absorbance A not only depends on the absorption coefficient, the length of the absorbing layer and the number of absorbing atoms therein, but also on the spectral interval over which the signal is recorded, i.e., the spectral bandwidth per pixel and the number of pixels evaluated. Although the problem of different (absorption and emission) line widths is known for several decades already to exist in conventional line source AAS, it is usually disregarded. By choosing a certain number of pixels in HR-CS AAS a defined wavelength interval can be selected over which the absorbance is recorded. As the numerical values obtained this way are not directly comparable with the conventional absorbance, it is necessary to define new terms and symbols for this kind of signal evaluation. With a steady-state signal the individual pixel absorbance values can be added or integrated, resulting in the unit-free wavelength-selected absorbance (WSA, symbol AΣ), or the wavelength-integrated absorbance (WIA, symbol Aλ) having a wavelength unit, such as picometers (pm). Similarly, with transient signals one can add-up or integrate (over wavelength) the individual integrated (in time) absorbance values of the selected pixels to obtain the volume under the absorbance peak. This results in the peak volume selected absorbance (PVSA, symbol AΣ,int), and the peak volume integrated absorbance (PVIA, symbol Aλ,int), with the units second (s) and second times picometer (s pm), respectively. For comparison purposes, however, the integrated absorbance values, i.e., WIA or PVIA, should be used since they are instrument-independent.  相似文献   

18.
Solid sampling high resolution continuum source molecule absorption spectrometry (SS-HR-CS MAS) was applied for the determination of chlorine in plastic using the strontium monochloride (SrCl) molecule. For this purpose, 10?µL of 20?g L?1 strontium (prepared from Sr(NO3)2) solution were pipetted with aqueous Cl standards or 0.05 to 4?mg of slivered plastic samples on a platform and introduced into the furnace. Chlorine was determined with the molecular absorption of SrCl at 635.862?nm using 1100?°C and 2200?°C for the pyrolysis and vaporization temperatures, respectively. Aqueous standards were used for calibration. The accuracy of the method was evaluated using a certified polyethylene reference material. The limit of detection and characteristic mass values of the method were 2.5?ng and 0.4?ng, respectively. The chlorine concentrations in various polyethylene beverage containers were determined.  相似文献   

19.
利用微波消解-高分辨连续光源原子吸收光谱法测定锁阳、韭菜籽两种中药材中铜(Cu)、铅(Pb)、镉(Cd)、铬(Cr)、砷(As)和汞(Hg)的含量.采用微波消解进行样品前处理,火焰原子吸收法测定其中的Cu含量,石墨炉原子吸收法测定Pb、Cd和Cr含量,氢化物发生原子吸收法测定As、Hg含量.方法线性关系良好,相关系数R^2大于0.999,加标回收率为95.61%~100.1%,RSD为0.8%~3.3%,测得锁阳和韭菜籽中Cu、Pb、Cd、Cr、As和Hg的含量值均低于《药用植物及制剂进口绿色行业标准》和食品安全国家标准《食品中污染物限量》(GB2762-2012)中规定的限量指标.方法分析速率快、干扰少、精密度高,适用于中药材中重金属含量的测定.  相似文献   

20.
固体进样-石墨炉原子吸收光谱法直接测定玉米中的铅   总被引:2,自引:0,他引:2  
建立了一种直接固体进样-石墨炉原子吸收光谱法测定玉米中铅的方法。方法的相对标准偏差为4.8%~11.3%(n=9),铅的检出限为0.0062ng,测定结果与国标法一致。与湿法消解方法相比较,本方法样品不用进行化学前处理而直接测定,避免了样品的稀释以及试剂的交叉污染带来的分析误差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号