首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Starting from the exact evolution of a Markovian dissipative quantum walk, a non-Markovian decoherence of two qubits interacting with a phonon thermal bath has been investigated analytically using quantum information tools. Concurrence and quantum discord are affected in a complex way, showing that entanglement decreases with dissipation. At the limit where dissipation dominates, quantum correlations survive in time as ∝t−1/2t1/2. Thus, even under the influence of dissipation, two qubits retain their quantumness for a long time. Quantum correlations could be therefore observed for a long time in related photonic experiments.  相似文献   

2.
Quantum systems with a finite number of freedom degrees ff develop robust singularities in the energy spectrum of excited states as the system’s size increases to infinity. We analyze the general form of these singularities for low ff, particularly f=2f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition.  相似文献   

3.
We discuss the quantum correlation dynamics of two qubits controlled through the application of ππ-pulses under classical dephasing non-Markovian environment. It is shown that the quantum discord (QD) and one-norm geometric quantum discord (one-norm GQD) between the two qubits, which are prepared initially in the three-parameter-XX-type quantum states, depend strongly on non-Markovian properties and the time difference between adjacent pulses. The freezing time of discord and one-norm GQD can be lengthened for appropriate pulse separate time and pulse numbers. And the freezing time of one-norm GQD is longer slightly than QD for both Markovian and non-Markovian cases. What is more, we find that double sudden changes of one-norm GQD can appear only for some initial parameters when ππ-pulses are applied.  相似文献   

4.
We consider the majority-vote dynamics where the noise parameter, associated with each spin on a two-dimensional square lattice, is a bimodally distributed random variable defined as qq with probability (1−f)(1f) or zero with probability ff, where 0≤f≤10f1 is the proportion of noiseless sites. We use Monte Carlo simulations and finite size scaling theory to characterize the ordered and disordered phases and study the phase transition of the model. We conclude that in the thermodynamic limit, the value of the critical noise below which there exists an ordered phase increases with ff, the fraction of sites with zero noise. The calculation of the critical exponents shows that the introduction of disorder in the noise parameter does not alter the Ising critical behavior of the model system.  相似文献   

5.
The physical properties of arbitrary half-integer spins F=N−1/2F=N1/2 fermionic cold atoms loaded into a one-dimensional optical lattice are investigated by means of a conformal field theory approach. We show that for attractive interactions two different superfluid phases emerge for F?3/2F?3/2: A BCS pairing phase, and a molecular superfluid phase which is formed from bound-states made of 2N   fermions. In the low-energy approach, the competition between these instabilities and charge-density waves is described in terms of ZNZN parafermionic degrees of freedom. The quantum phase transition for F=3/2,5/2F=3/2,5/2 is universal and shown to belong to the Ising and three-state Potts universality classes respectively. In contrast, for F?7/2F?7/2, the transition is non-universal. For a filling of one atom per site, a Mott transition occurs and the nature of the possible Mott-insulating phases are determined.  相似文献   

6.
The Robertson–Schrödinger, Heisenberg–Robertson and Trifonov uncertainty relations for arbitrary two functions f1f1 and f2f2 depending on the quantum phase and the number of photons respectively, are given. Intelligent states and states which minimize locally the product of uncertainties (Δf1)2⋅(Δf2)2(Δf1)2(Δf2)2 or the sum (Δf1)2+(Δf2)2(Δf1)2+(Δf2)2 are investigated for the cases f1=?,exp(i?),exp(−i?),cos?,sin?f1=?,exp(i?),exp(i?),cos?,sin? and f2=nf2=n.  相似文献   

7.
We study the geometries generated by two-dimensional causal dynamical triangulations (CDT) coupled to d   massless scalar fields. Using methods similar to those used to study four-dimensional CDT we show that there exists a c=1c=1 “barrier”, analogous to the c=1c=1 barrier encountered in non-critical string theory, only the CDT transition is easier to be detected numerically. For d?1d?1 we observe time-translation invariance and geometries entirely governed by quantum fluctuations around the uniform toroidal topology put in by hand. For d>1d>1 the effective average geometry is no longer toroidal but “semiclassical” and spherical with Hausdorff dimension dH=3dH=3. In the d>1d>1 sector we study the time dependence of the semiclassical spatial volume distribution and show that the observed behavior is described by an effective mini-superspace action analogous to the actions found in the de Sitter phase of three- and four-dimensional pure CDT simulations and in the three-dimensional CDT-like Ho?ava–Lifshitz models.  相似文献   

8.
9.
10.
11.
A protocol for transferring an unknown single qubit state evidences quantum features when the average fidelity of the outcomes is, in principle, greater than 2/32/3. We propose to use the probabilistic and unambiguous state extraction scheme   as a mechanism to redistribute the fidelity in the outcome of the standard teleportation when the process is performed with an XX-state as a noisy quantum channel. We show that the entanglement of the channel is necessary but not sufficient in order for the average fidelity fXfX to display quantum features, i.e., we find a threshold CXCX for the concurrence of the channel. On the other hand, if the mechanism for redistributing fidelity is successful then we find a filterable outcome with average fidelity fX,0fX,0 that can be greater than fXfX. In addition, we find the threshold concurrence of the channel CX,0CX,0 in order for the average fidelity fX,0fX,0 to display quantum features and surprisingly, the threshold concurrence CX,0CX,0 can be less than CXCX. Even more, we find some special cases for which the threshold values become zero.  相似文献   

12.
13.
14.

We investigate the dynamics of non-classical correlations(entanglement and quantum discord) of the system consisting of two non-interacting superconducting qubits coupling with a common data bus, where the system is driven by the dynamical decoupling pulses. It is found that the non-classical correlations between two superconducting qubits can be increased by appling a train of dynamical decoupling pulses. Furthermore, we also explore the influence of the dynamical decoupling pulses on the information flowing between superconducting qubits and data bus by making use of the trace distance. It is shown that the dynamical decoupling pulses can protect quantum information of two superconducting qubits and force information to flow back to the superconducting qubits from the data bus.

  相似文献   

15.
In this Letter we have investigated the cosmological dynamics of non-locally corrected gravity involving a function of the inverse d'Alembertian of the Ricci scalar, f(−1R)f(−1R). Casting the dynamical equations into local form, we derive the fixed points of the dynamics and demonstrate the existence and stability of a one parameter family of dark energy solutions for a simple choice, f(−1R)∼exp(α−1R)f(−1R)exp(α−1R). The effective EoS parameter is given by, weff=(α−1)/(3α−1)weff=(α1)/(3α1) and the stability of the solutions is guaranteed provided that 1/3<α<2/31/3<α<2/3. For 1/3<α<1/21/3<α<1/2 and 1/2<α<2/31/2<α<2/3, the underlying system exhibits phantom and non-phantom behavior respectively; the de Sitter solution corresponds to α=1/2α=1/2. For a wide range of initial conditions, the system mimics dust like behavior before reaching the stable fixed point. The late time phantom phase is achieved without involving negative kinetic energy fields. A brief discussion on the entropy of de Sitter space in non-local model is included.  相似文献   

16.
Convergence properties of Taylor expansions of observables, which are also used in lattice QCD calculations at non-zero chemical potential, are analyzed in an effective Nf=2+1Nf=2+1 flavor Polyakov quark–meson model. A recently developed algorithmic technique allows the calculation of higher-order Taylor expansion coefficients in functional approaches. This novel technique is for the first time applied to an effective Nf=2+1Nf=2+1 flavor Polyakov quark–meson model and the findings are compared with the full model solution at finite densities. The results are used to discuss prospects for locating the QCD phase boundary and a possible critical endpoint in the phase diagram.  相似文献   

17.
Fluxmetric and magnetometric demagnetizing factors, NfNf and NmNm, for cylinders along the axial direction are numerically calculated as functions of material susceptibility χχ and the ratio γγ of length to diameter. The results have an accuracy better than 0.1% with respect to min(Nf,m,1-Nf,m)min(Nf,m,1-Nf,m) and are tabulated in the range of 0.01?γ?5000.01?γ?500 and -1?χ<∞-1?χ<. NmNm along the radial direction is evaluated with a lower accuracy from NmNm along the axis and tabulated in the range of 0.01?γ?10.01?γ?1 and -1?χ<∞-1?χ<. Some previous results are discussed and several applications are explained based on the new results.  相似文献   

18.
A countable class of integrable dynamical systems, with four-dimensional phase space and conserved quantities in involution (Hn,In)(Hn,In) are exhibited. For n=1n=1 we recover Neumann system on TS2TS2. All these systems are also integrable at the quantum level.  相似文献   

19.
20.
We present a family of nonrelativistic Yang–Mills gauge theories in D+1D+1 dimensions whose free-field limit exhibits quantum critical behavior with gapless excitations and dynamical critical exponent z=2z=2. The ground state wavefunction is intimately related to the partition function of relativistic Yang–Mills in D   dimensions. The gauge couplings exhibit logarithmic scaling and asymptotic freedom in the upper critical spacetime dimension, equal to 4+14+1. The theories can be deformed in the infrared by a relevant operator that restores Poincaré invariance as an accidental symmetry. In the large-N limit, our nonrelativistic gauge theories can be expected to have weakly curved gravity duals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号