首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
阳离子荧光染料阿尔新蓝8GX与阴离子荧光染料四磺化铁酞菁发生缔合作用,使四磺化铁酞菁的荧光猝灭,当核酸存在时,削弱了离子缔合作用使四磺化铁酞菁的荧光恢复。荧光增强的程度与核酸的量成线性关系,据此实现了对核酸的定量测定。  相似文献   

2.
A simply synthesized 4-aminonaphthalimide derivative 1 expresses both polarity and viscosity sensitive fluorescence spectra, indicating its potential usage as an environmentally sensitive fluorescence probe. By comparing the fluorescence behavior of 1 with that of a known 4-aminonaphthalimide derivative 2, it was found that the substitution of the 4-amino group has profound influence on the environmentally sensitive fluorescence properties of 4-aminonaphthalimide.  相似文献   

3.
In this paper, fluorescence-enhancement of Tb-nucleic acids [fish sperm DNA (fsDNA) and yeast RNA (yRNA)] by Lu3+ is studied in detail and is applied to determine nucleic acids. The experiments indicated that under the optimum conditions, a linear relationship was obtained between the fluorescence intensity (If) and the concentration of nucleic acids. The linear range is 1.2×10−8-1.0×10−4 g/ml for DNA and 3.0×10−8-8.0×10−4 g/ml for RNA. The detection limits (signal/noise=3) for DNA and RNA were 4.8×10−9 and 7.0×10−9 g/ml, respectively. The mechanism of the co-luminescence effect is also discussed.  相似文献   

4.
A weakly fluorescent coumarinyl aldehyde was transformed into a strongly fluorescent aldol product by a catalytic amount of proline. The aldehyde probe has shown a highly selective fluorescence turn-on response toward proline over other amino acids with micromolar sensitivity.  相似文献   

5.
In the first part of this paper, the need for analytical techniques capable of highly parallel and sensitive nucleic acid analysis, with the capability of achieving very low limits of detection (LODs) and of resolving small differences in concentration, is described. Whereas the requirement for performing simultaneously multi-analyte detection is solved by the approach of nucleic acid microarrays, requirements on sensitivity can often not be satisfied by classical detection technologies. Inherent limitations of conventional fluorescence excitation and detection schemes are identified, and the implementation of planar waveguides as analytical platforms for nucleic acid microarrays, with fluorescence excitation in the evanescent field associated with the guided excitation light, is proposed. The relevant parameters for an optimization of sensitivity are discussed.In the second part of this paper, the specific formats of our planar waveguide platforms, which are compatible with established industrial standard formats allowing for integration into industrial high throughput environments, are presented, as well as the dedicated optical system for fluorescence excitation and detection that we developed. In a direct comparison with a state-of-the-art scanner, it is demonstrated that the implementation of genomic microarrays on planar waveguide platforms allows for unprecedented, direct detection of low-abundant genes in limited amounts of sample. Otherwise, when using conventional fluorescence excitation and detection configurations, the detection of such low amounts of nucleic acids requires massive sample preparation and signal or target amplification steps.  相似文献   

6.
7.
A novel graphene oxide (GO) fluorescence switch-based homogenous system has been developed to solve two problems that are commonly encountered in conventional GO-based biosensors. First, with the assistance of toehold-mediated nonenzymatic amplification (TMNA), the sensitivity of this system greatly surpasses that of previously described GO-based biosensors, which are always limited to the nM range due to the lack of efficient signal amplification. Second, without enzymatic participation in amplification, the unreliability of detection resulting from nonspecific desorption of DNA probes on the GO surface by enzymatic protein can be avoided. Moreover, the interaction mechanism of the double-stranded TMNA products contains several single-stranded toeholds at two ends and GO has also been explored with combinations of atomic force microscopy imaging, zeta potential detection, and fluorescence assays. It has been shown that the hybrids can be anchored to the surface of GO through the end with more unpaired bases, and that the other end, which has weaker interaction with GO, can escape GO adsorption due to the robustness of the central dsDNA structures. We verified this GO fluorescence switch-based detection system by detecting microRNA 21, an overexpressed non-encoding gene in a variety of malignant cells. Rational design of the probes allowed the isothermal nonenzymatic reaction to achieve more than 100-fold amplification efficiency. The detection results showed that our strategy has a detection limit of 10 pM and a detection range of four orders of magnitude.  相似文献   

8.
Quantum dots (QDs) have a number of unique optical properties that are advantageous in the development of bioanalyses based on fluorescence resonance energy transfer (FRET). Researchers have used QDs as energy donors in FRET schemes for the analysis of nucleic acids, proteins, proteases, haptens, and other small molecules. This paper reviews these applications of QDs. Existing FRET technologies can potentially be improved by using QDs as energy donors instead of conventional fluorophores. Superior brightness, resistance to photobleaching, greater optimization of FRET efficiency, and/or simplified multiplexing are possible with QD donors. The applicability of the Förster formalism to QDs and the feasibility of using QDs as energy acceptors are also reviewed.
Figure A ligand capped core/shell quantum dot acting as energy donor in a FRET process with aconjugated Cy3 labeled oligonucleotide
  相似文献   

9.
Rhodamine B hydroxylamide (1) is characterized as a highly selective and sensitive fluorescence probe for Cu2+. Under the optimized conditions, the probe exhibits specific absorbance-on and fluorescence-on responses to Cu2+ only. This remarkable property may allow Cu2+ to be detected directly in the presence of the other transition metal ions, and such an application has been demonstrated to human serum. The reaction mechanism is also investigated and proposed as that the hydroxylamide group of 1 binds Cu2+, and the subsequent complexation of Cu2+ displays a high catalytic activity for the hydrolytic cleavage of the amide bond, causing the release of fluorophore (rhodamine B) and thereby the retrievement of absorbance and fluorescence. The recovered fluorescence intensity is proportional to the concentration of Cu2+ in the range 1-20 μM. The detection limit for Cu2+ is 33 nM (k = 3). The reaction mechanism described here may be useful for developing excellent spectroscopic probes with cleavable active bonds for other analytes.  相似文献   

10.
A general route for preparation of dye-encapsulated polymer particles via an emulsion polymerization process has been described. 1-Naphthaleneboronic acid (NBA) was encapsulated, the resultant particles were used as a fluorescence probe for cilnidipine assay based on fluorescence quenching. The sensitivity of NBA-encapsulated probe to cilnidipine was largely improved in comparison with that of free NBA. The probe showed a linear response toward cilnidipine over the concentration range of 2.0 × 10−7 to 1.1 × 10−5 mol l−1, with high sensitivity, fast response time, and good selectivity.  相似文献   

11.
CdS nanoparticles have been prepared and modified with mercaptoacetic acid. The functionalized nanoparticles are water-soluble and biocompatible. They could be used as a fluorescence probe in the determination of bovine serum albumin (BSA), which was proved to be a simple, rapid and specific method. In comparison with single organic fluorophores, these nanoparticle probes are brighter, more stable against photobleaching, and do not suffer from blinking. Under the optimum conditions, the response is linearly proportional to the concentration of BSA between 0.1 and 3.2 μg ml−1, and the limit of detection is 0.08 μg ml−1.  相似文献   

12.
It was found the strong fluorescence emitted by the bis-benzimidazole derivative Hoechst 33258 at 490 nm could be efficiently quenched in pH 4.5 buffer when nucleic acids were added. Analysis of fluorescence intensity showed that the procedure was a static quenching dominated one, which was also demonstrated by the electron absorption spectra and lifetime of the excited state. The binding constant and numbers of binding sites were obtained from the Scatchard plot. The decreased fluorescence intensity was in proportion to the concentration of nucleic acids in the range 40-1800 ng ml−1 for dsDNA and 26-1700 ng ml−1 for ssDNA. The limits of detection were 12 and 8 ng ml−1, respectively. The sensitivity of the method was about 3.4 times higher for dsDNA detection and 5.4 times higher for ssDNA detection compared with the widely used fluorescence enhancement method using the same dye. Application results to synthetic samples showed simplicity, rapidity and satisfactory reproducibility of the presented method. Measurement of real samples extracted from leaves of Crassula argentea and E. coli genome also gave satisfactory results, which were in good agreement with those obtained using spectrophotometric method.  相似文献   

13.
Zhong P  Yu Y  Wu J  Lai Y  Chen B  Long Z  Liang C 《Talanta》2006,70(4):902-906
A new fluorescence probe, CdSe nanocrystal has been prepared and modified with 11-mercaptoundecanoic acid [HS-(CH2)10-COOH]. The functionalized nanoparticles were characterized using transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) spectroscopy. The results demonstrate that CdSe is dispersed homogeneously in aqueous solution and well protected from the environmental oxygen. They can be used as a new fluorescence probe for lysozyme, which was simple, rapid and specific. Under the optimum condition, the response is linearly proportional to the amount of lysozyme from 0.20 to 26.0 μg ml−1, and the limit of detection is 0.115 μg ml−1. The proposed method has been applied to the determination of lysozyme in egg white, with the recovery of 96-105%.  相似文献   

14.
4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) is a well-known fluorophore, with a high molar extinction coefficient and high fluorescence quantum efficiency (Phi(fl)). Furthermore, its structure can be modified to change its excitation and emission wavelengths. However, little work has been done on the structural modification of fluorines at the B-4 position with other functional groups. We synthesized 4-methoxy-substituted BODIPY derivatives in satisfactory yields, and found that they exhibited improved solubility in aqueous solution. Moreover, their oxidation and reduction potentials were greatly decreased without any change in their absorbance and fluorescence properties. These features of 4-substituted BODIPYs may be useful for developing novel fluorescence probes based on the intramolecular photoinduced electron transfer (PeT) mechanism, because it is possible to optimize the PeT process precisely by modulating the electrochemical properties of the fluorophore. The value of this approach is exemplified by its application to the development of a highly sensitive and pH-independent fluorescence probe for nitric oxide.  相似文献   

15.
A fluorescence quenching method was developed for determination of microamounts of nucleic acids by using brilliant cresyl blue (BCB) as a new red region fluorescent probe. In aqueous hexylmethylene tetramine solution, BCB showed maximum excitation and emission wavelengths at 626 and 670 nm, respectively, and the fluorescence of BCB could be greatly quenched by DNA (or RNA). Under optimal conditions, the calibration graphs are linear over the range of 0.02–0.80 μg/ml for SM DNA and 0.25–1.5 μg/ml for yeast RNA. The corresponding detection limits are 7 ng/ml for SM DNA and 25 ng/ml for yeast RNA, respectively. SM DNA can be determinated in the presence of 40% (w/w) RNA, and the relative standard deviation of six measurements is 2.5% for 500 ng/ml SM DNA. The result of the determination of golden staphylococcus DNA by this method was satisfactory.  相似文献   

16.
Cao Y  Wu X  Wang M 《Talanta》2011,84(4):1530-1194
Nucleic acids can greatly enhance fluorescence intensity of the kaempferol (Km)-Al(III) system in the presence of silver nanoparticles (AgNPs). Based on this, a novel method for the determination of nucleic acids is proposed. Under studied conditions, there are linear relationships between the extent of fluorescence enhancement and the concentration of nucleic acids in the range of 5.0 × 10−9 to 2.0 × 10−6 g mL−1 for fish sperm DNA (fsDNA), 7.0 × 10−9 to 2.0 × 10−6 g mL−1 for salmon sperm DNA (smDNA) and 2.0 × 10−8 to 3.0 × 10−6 g mL−1 for yeast RNA (yRNA), and their detection limits are 2.5 × 10−9 g mL−1, 3.2 × 10−9 g mL−1 and 7.3 × 10−9 g mL−1, respectively. Samples were satisfactorily determined. And the system of Km-Al(III)-AgNPs was used as a fluorescence staining reagent for sensitive DNA detection by DNA pattern of agarose gel electrophoresis analysis. The results indicate that the fluorescence enhancement should be attributed to the formation of Km-Al(III)-AgNPs-nucleic acids aggregations through electrostatic attraction and adsorption bridging action of Al(III) and the surface-enhanced fluorescence effect of AgNPs.  相似文献   

17.
Z Zhu 《Analytical sciences》2001,17(12):1375-1377
A novel fluorometric method has been developed for rapid determination of DNA and RNA with calcein-neodymium complex as a fluorescence probe. The method is based on the fluorescence enhancement of calcein-Nd(III) complex in the presence of DNA or RNA, with maximum excitation and emission wavelength at 489 nm and 514 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range 0.5 - 3.0 microg/ml for both DNA and yeast RNA, 0.4 - 2.0 microg/ml for fish sperm DNA (FS DNA) and 0 - 3.0 microg/ml for calf thymus DNA (CT DNA). The corresponding detection limits are 15.1 ng/ml for DNA, 21.2 ng/ml for yeast RNA, 10.5 ng/ml for FS DNA and 8.9 ng/ml for CT DNA. The interaction mechanism for the binding of calcein-Nd(III) complex to DNA is also studied. The results of absorption spectra, fluorescence polarization measurements and thermal denaturation experiments, suggested that the interaction between calcein-Nd(III) complex and DNA is an electrostatic interaction.  相似文献   

18.
CpG dinucleotide in DNA has a great tendency to mutate to TpG dinucleotide and this transition can cause some serious diseases. In this work, fluorescent Ag nanoclusters (Ag NCs) were employed as useful inorganic fluorophores for the potential of selectively discriminating TpG dinucleotide from CpG dinucleotide. Opposite the base Y of interest in YpG dinucleotide (Y = C or T), a bulge site was introduced so as to make the base Y to be unpaired and ready for Ag+ binding. Such that the unpaired Y and context base pairs can provide a specific space suitable for creating fluorescent Ag NCs. We found that in comparison with CpG dinucleotide, TpG dinucleotide is much more efficient in growing fluorescent Ag NCs. Therefore, mutation of CpG dinucleotide to TpG can be identified by a turn-on fluorescence response and a high selectivity. More interestingly, Ag NCs exhibit a better performance in the TpG recognition over the other dinucleotides (Y = A and G) than the previously used organic fluorophores. Additionally, the effectiveness of the bulge site design in discriminating these dinucleotides was evidenced by control DNAs having the abasic site structure. We expect that a practical method for TpG dinucleotide recognition with a high selectivity can be developed using the bulge site-grown fluorescent Ag NCs as novel probes.  相似文献   

19.
In this work, we utilized polyethyleneimine-capped silver nanoclusters (PEI-Ag nanoclusters) to develop a new fluorometric method for the determination of hydrogen peroxide and glucose with high sensitivity. The PEI-Ag nanoclusters have an average size of 2 nm and show a blue emission at 455 nm. The photostable properties of the PEI-Ag nanoclusters were examined. The fluorescence of the PEI-Ag nanoclusters could be particularly quenched by H2O2. The oxidization of glucose by glucose oxidase coupled with the fluorescence quenching of PEI-Ag nanoclusters by H2O2 can be used to detect glucose. Under optimum conditions, the fluorescence intensity quenched linearly in the range of 500 nM–100 μM with high sensitivity. The detection limit for H2O2 was 400 nM. And a linear correlation was established between fluorescence intensity (F0 − F) and concentration of glucose in the range of 1.0 × 10−6 to 1.0 × 10−5 M and 1.0 × 10−5 to 1.0 × 10−3 M with a detection limit of 8.0 × 10−7 M. The method was used for the detection of glucose in human serum samples with satisfactory results. Furthermore, the mechanism of sensitive fluorescence quenching response of Ag nanoclusters to glucose and H2O2 has been discussed.  相似文献   

20.
A new fluorescent probe, based on an amphiphilic Schiff-base zinc(II) complex, 1, for the sensitive detection of some important classes of alkaloids is presented. It exhibits optical absorption changes and fluorescence enhancement upon formation of 1:1 1·alkaloid adducts. Four diverse classes of alkaloids, represented by their basic structures and related representative prototypes, are investigated, through the study of optical and binding properties of 1·alkaloid adducts. It is found that the chromogenic and fluorogenic complex 1 is selective between these classes of alkaloids in the micromolar range, with a limit of quantification of 0.40 μM for nicotine and 0.43 μM for cinchonine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号