首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and label-free electrochemical impedance immunosensor via covalent coupling the antibody with functionalized gold nanoparticles (FAuNP) for probing apolipoprotein A-I was presented. The hybrid gold nanoparticles were prepared with a two-in-one strategy, i.e. via the stepwise employment of self-assembled monolayer (SAM) and sol-gel techniques, to improve the performance of such a label-free immunosensor, which was investigated by electrochemical impedance spectroscopy. It was found that this novel FAuNP immunosensor showed higher protein-loading capacity and better response properties (6-17 times) than that fabricated by normal SAM technique did. The remarkably improved properties of the immunosensor were ascribed to FAuNP with the larger surface-to-volume ratio, more free amino linkage groups, and the lower nonspecific protein adsorption. As a result, the thus-prepared antibody-modified immunosensor showed reproducible (R.S.D. = ±3.2%, n = 10) linear response to apolipoprotein A-I (Apo A-I) antigens in the range of 0.1-10 ng mL−1. The detection limit of this immunosensor was 50 pg mL−1 (corresponding to 1.8 pmol L−1), which was two orders of magnitude lower than that of the traditional methods. These results exhibited the novel immunosensor had a high sensitivity, stability and selectivity for the determination of Apo A-I, especially in clinic microanalysis.  相似文献   

2.
A novel amperometric magnetoimmunosensor using an indirect competitive format is developed for the sensitive detection of the amino-terminal pro-B-type natriuretic peptide (NT-proBNP). The immunosensor design involves the covalent immobilization of the antigen onto carboxylic-modified magnetic beads (HOOC-MBs) activated with N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS), and further incubation in a mixture solution containing variable concentrations of the antigen and a fixed concentration of an HRP-labeled detection antibody. Accordingly, the target NT-proBNP in the sample and that immobilized on the MBs compete for binding to a fixed amount of the specific HRP-labeled secondary antibody. The immunoconjugate-bearing MBs are captured by a magnet placed under the surface of a disposable gold screen-printed electrode (Au/SPE). The amperometric responses measured at –0.10 V (vs. a Ag pseudo-reference electrode), upon addition of 3,3′,5,5′-tetramethylbenzidine (TMB) as electron transfer mediator and H2O2 as the enzyme substrate, are used to monitor the affinity reaction. The developed magnetoimmunosensor provides attractive analytical characteristics in 10-times diluted human serum samples, exhibiting a linear range of clinical usefulness (0.12–42.9 ng mL−1) and a detection limit of 0.02 ng mL−1, which can be used in clinical diagnosis of chronic heart failure in the elderly and for classifying patients at risk of death after heart transplantation. The magnetoimmunosensor was successfully applied to the analysis of spiked human serum samples.  相似文献   

3.
The development of an electrochemical immunosensor incorporated in a micro fluidic cell for quantification of citrinin (CIT) mycotoxin in rice samples is described for the first time. Both CIT present in rice samples and immobilized on a gold surface electrodeposited on a glassy carbon (GC) electrode modified with a cysteamine self-assembled monolayer were allowed to compete for the monoclonal mouse anti-CIT IgG antibody (mAb-CIT) present in solution. Then, an excess of rabbit anti mouse IgG (H + L) labelled with the horseradish peroxidase (secAb-HRP) was added, which reacts with the mAb-CIT which is in the immuno-complex formed with the immobilized CIT on the electrode surface. The HPR, in the presence of hydrogen peroxide (H2O2) catalyzes the oxidation of catechol (H2Q) whose back electrochemical reduction was detected on a GC electrode at −0.15 V vs Ag/AgCl by amperometric measurements. The current measured is proportional to the enzymatic activity and inversely proportional to the amount of CIT present in the rice samples. This immunosensor for CIT showed a range of work between 0.5 and 50 ng mL−1. The detection (LOD) and the quantification (LOQ) limits were 0.1 and 0.5 ng mL−1, respectively. The coefficients of variation intra- and inter-assays were less than 6%. The electrochemical detection could be done within 2 min and the assay total time was 45 min. The immunosensor was provided to undertake at least 80 determinations for different samples with a minimum previous pre-treatment. Our electrochemical immunosensor showed a higher sensitivity and reduced analysis time compared to other analytical methods such as chromatographic methods. This methodology is fast, selective and very sensitive. Thus, the immunosensor showed to be a very useful tool to determine CIT in samples of cereals, mainly rice samples.  相似文献   

4.
This work describes the preparation of an electrochemical immunosensor for estradiol based on the surface modification of a screen printed carbon electrode with grafted p-aminobenzoic acid followed by covalent binding of streptavidin (Strept) and immobilization of biotinylated anti-estradiol (anti-estradiol-Biotin). The hormone determination was performed by applying a competitive immunoassay with peroxidase-labelled estradiol (HRP–estradiol) and measurement of the amperometric response at −200 mV using hydroquinone (HQ) as redox mediator. The calibration curve for estradiol exhibited a linear range between 1 and 250 pg mL−1 (r = 0.990) and a detection limit of 0.77 pg mL−1 was achieved. Cross-reactivity studies with other hormones related with estradiol at physiological concentration levels revealed the practical specificity of the developed method for estradiol. A good reproducibility, with RSD = 5.9% (n = 8) was also observed. The operating stability of a single bioelectrode modified with anti-estradiol-Biotin-Strept was nine days when it was stored at 8 °C under humid conditions between measurements. The developed immunosensor was applied to the analysis of certified serum and spiked urine samples with good results.  相似文献   

5.
Despite the wide applicability and specificity of lectins to carbohydrate moieties, there are few lectin specific biosensors. This is attributed to the difficulty in defining the relevant experimental parameters to measure for sensing. We hereby describe the development of direct and indirect electrochemical sensors to determine the exact trace amounts of probarley lectin (ProBL) and its conversion product wheat germ agglutinin (WGA). In addition to WGA, the antigens (ProBL) employed in this study were over expressed in bacteria, isolated from protein bodies, and purified using immobilized N-acetylglusamine in order to obtain correctly folded active lectins. The amperometric immunosensor uses cell lines producing monoclonal antibody (mAB) to the pro-region of ProBL over expressed from Escherichia coli. The efficacy and sensing characteristics of the lectin were optimized using monoclonal antibody to WGA and the resulting sensor was found to detect only ProBL in the linear range 10−3-102 μg mL−1 and a detection limit of 10−3 μg mL−1.  相似文献   

6.
Li J  Zhao X  Wei H  Gu ZZ  Lu Z 《Analytica chimica acta》2008,625(1):63-69
Photonic crystal sensing materials have been validated that they are very sensitive to refractive index changes. Herein, three-dimensionally ordered macroporous (3DOM) (>50 nm) TiO2 inverse opal film has been fabricated by the self-assembly technique. Based on the TiO2 inverse opal film, the optical spectrometer was established for label-free immunosensor. The sensing performance of the 3DOM TiO2 was investigated using human IgG/goat anti-human IgG couple, which showed that the sensitivity of 3DOM TiO2 inverse opal film could reach to 1 μg mL−1 (equivalent to 1.5 pg mm−2) of protein concentration detection limit. The 3DOM TiO2 inverse opal has a large internal surface area, low fluorescence background and unique optical properties. These characteristics indicated the feasibility of 3DOM TiO2 inverse opal in label-free immunoassay.  相似文献   

7.
Wang Z  Yang Y  Li J  Gong J  Shen G  Yu R 《Talanta》2006,69(3):686-690
A new strategy to construct amperometric immunosensor for human IgG assay based on ZnO/chitosan composite as sensing platform has been described. This material, which combined the advantages of inorganic species, ZnO and organic polymer, chitosan, can maintain biological activity well. A sequential sandwich immunoassay format was performed on the ZnO/chitosan composite supported by glass carbon electrode (GCE) using goat-anti-human IgG antibody (IgG Ab) and human IgG as a model system. Amperometry was used to determine the amount of horse-radish peroxidase (HRP) fixed on the sensor surface, which was related to the content of the desired human IgG. Assay conditions that were optimized included the amount of labeled antibody, the incubation time and temperature, the pH of the substrate solution, etc. Using hydroquinone as a mediator, amperometric detection at −150 mV (versus SCE) resulted in a detection range 2.5-500 ng mL−1, with a detection limit of 1.2 ng mL−1. The simple manipulations of the construction of ZnO/chitosan composite, as well as low-cost and broad linear range, are the main features of the proposed immunosensing method.  相似文献   

8.
Caifeng Ding  Fei Zhao  Jin-Ming Lin 《Talanta》2009,78(3):1148-4751
A novel and effective electrochemical immunosensor for the rapid determination of α-fetoprotein (AFP) based on carbon paste electrode (CPE) consisting of room temperature ionic liquid (RTIL) N-butylpyridinium hexafluorophosphate (BPPF6) and graphite. The surface of the CPE was modified with gold nanoparticles for the immobilization of the α-fetoprotein antibody (anti-AFP). By sandwiching the antigen between anti-AFP on the CPE modified with gold nanoparticles and the secondary antibody, polyclonal anti-human-AFP labeled with horseradish peroxidase (HRP-labeled anti-AFP), the immunoassay was established. The concentration of AFP was determined based on differential pulse voltammetry (DPV) signal, which was generated in the reaction between O-aminophenol (OAP) and H2O2 catalyzed by HRP labeled on the sandwich immunosensor. AFP concentration could be measured in a linear range of 0.50-80.00 ng mL−1 with a detection limit of 0.25 ng mL−1. The immunosensor exhibited high sensitivity and good stability, and would be valuable for clinical assay of AFP.  相似文献   

9.
The aim of this study is to elaborate a simple and sensitive electrochemical immunoassay using ferrocenecarboxylic (Fc-COOH)-doped silica nanoparticles (SNPs) as an immobilized affinity support for cancer antigen 15-3 (CA 15-3) detection. The Fc-COOH-doped SNPs with redox-active were prepared by using a water-in-oil microemulsion method. The use of colloidal silica could prevent the leakage of Fc-COOH and were easily modified with trialkoxysilane reagents for covalent conjugation of CA 15-3 antibodies (anti-CA 15-3). The Fc-COOH-doped SNPs were characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The fabrication process of the electrochemical immunosensor was demonstrated by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Under optimal conditions, the developed immunosensor showed good linearity at the studied concentration range of 2.0-240 U mL−1 with a coefficient 0.9986 and a detection limit of 0.64 U mL−1 at S/N = 3.  相似文献   

10.
Gao X  Zhang Y  Wu Q  Chen H  Chen Z  Lin X 《Talanta》2011,85(4):1980-1985
A simple and controllable one-step electrodeposition method for the preparation of a chitosan-carbon nanotubes-gold nanoparticles (CS-CNTs-GNPs) nanocomposite film was used to fabricate an immunosensor for detection of carcinoembryonic antigen (CEA). The porous three-dimensional CS-CNTs-GNPs nanocomposite film, which offered a large specific surface area for immobilization of antibodies, exhibited improved conductivity, high stability and good biocompatibility. The morphology of the formed nanocomposite film was investigated by scanning electron microscopy (SEM), and the electrochemical behaviors of the immunosensor were characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Under the optimal conditions, the proposed immunosensor could detect CEA in two linear ranges from 0.1 to 2.0 ng mL−1 and from 2.0 to 200.0 ng mL−1, with a detection limit of 0.04 ng mL−1. The immunosensor based on CS-CNTs-GNPs nanocomposite film as the antibody immobilization matrix could exhibit good sensitivity, stability, and reproducibility for the determination of CEA.  相似文献   

11.
A novel Cu2O-SiO2 nanostructured particle was synthesized by a solution-phase method and was adopted for construction of a label-free amperometric immunosensor. The porous Cu2O-SiO2 nanoparticles had good redox electrochemical activity, large surface-to-volume ratio, film-forming ability and high stability. The physical morphology and structure of Cu2O-SiO2 nanoparticles were examined by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The chemical component of Cu2O-SiO2 was confirmed by X-ray photoelectron spectroscopy (XPS) and auger electron spectra (AES). The electrode modification process was probed by cyclic voltammetry (CV) and the performance of the immunosensor was studied by differential pulse voltammetry (DPV) measurements. To improve the analytical characteristics of the immunosensor, the experimental conditions were optimized. The immunosensor exhibited a good response to ferritin in ranges from 1.0 to 5.0 and 5.0 to 120.0 ng mL−1 with a detection limit of 0.4 ng mL−1. The fabricated immunosensor could make a low-cost, sensitive, quantitative detection of ferritin, and would have a potential application in clinical immunoassays.  相似文献   

12.
Xiaoqiang Liu 《Talanta》2009,77(4):1437-1443
Low picograms of the hormone 17β-estradiol were detected at an electrochemical immunosensor. This immunosensor features a gold nanoparticle|Protein G-(LC-SPDP)1-scaffold, to which a monoclonal anti-estradiol capture antibody was immobilised to facilitate a competitive immunoassay between sample 17β-estradiol and a horseradish peroxidase-labelled 17β-estradiol conjugate. Upon constructing this molecular architecture on a disposable gold electrode in a flow cell, amperometry was conducted to monitor the reduction current of benzoquinone produced from a catalytic reaction of horseradish peroxidase. This current was then quantitatively related to 17β-estradiol present in a sample. Calibration of immunosensors in blood serum samples spiked with 17β-estradiol yielded a linear response up to ∼1200 pg mL−1, a sensitivity of 0.61 μA/pg mL−1 and a detection limit of 6 pg mL−1. We attribute these favourable characteristics of the immunosensors to the gold nanoparticle|Protein G-(LC-SPDP) scaffold, where the gold nanoparticles provided a large electrochemically active surface area that permits immobilisation of an enhanced quantity of all components of the molecular architecture, while the Protein G-(LC-SPDP) component aided in not only reducing steric hindrance when Protein G binds to the capture antibody, but also providing an orientation-controlled immobilisation of the capture antibody. Coupled with amperometric detection in a flow system, the immunosensor exhibited excellent reproducibility.  相似文献   

13.
In this contribution, mesoporous carbon nanospheres (MCN) were used to fabricate a label-free electrochemical immunosensor for breast cancer susceptibility gene (BRCAl). The detection platform was constructed by conjugation of anti-BRCA1 on glassy carbon electrodes which were modified by mesoporous carbon nanospheres–toluidine blue nanocomposite (MCN–TB)/room temperature ionic-liquid (RTIL) composited film. TB was adsorbed onto MCN and acted as a redox probe. The electroactivity of TB was greatly enhanced in the presence of MCN. The good conductivity of MCN and BMIM·BF4 could promote the electron transfer and thus enhance the detection sensitivity. Moreover, the large surface area of MCN and the protein-binding properties of BMIM·BF4 could greatly increase the antibody loading. The specific antibody–antigen immunoreaction on the electrode surface resulted in a decrease of amperometric signal of the electrode. Under optimized conditions, the amperometric signal decreased linearly with BRCAl concentration in the range of 0.01–15 ng mL−1 with a low detection limit of 3.97 pg mL−1. The immunosensor exhibits high sensitivity, good selectivity and stability.  相似文献   

14.
Nanoporous gold (NPG) has recently received considerable attention in analytical electrochemistry because of its good conductivity and large specific surface area. A facile layer-by-layer assembly technique fabricated NPG was used to construct an electrochemical immunosensor for carcinoembryonic antigen (CEA). NPG was fabricated on glassy carbon (GC) electrode by alternatively assembling gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) using 1,4-benzenedimethanethiol as a cross-linker, and then AgNPs were dissolved with HNO3. The thionine was absorbed into the NPG and then gold nanostructure was electrodeposited on the surface through the electrochemical reduction of gold chloride tetrahydrate (HAuCl4). The anti-CEA was directly adsorbed on gold nanostructure fixed on the GC electrode. The linear range of the immunosensor was from 10 pg mL−1 to 100 ng mL−1 with a detection limit of 3 pg mL−1 (S/N = 3). The proposed immunosensor has high sensitivity, wide linear range, low detection limit, and good selectivity. The present method could be widely applied to construct other immunosensors.  相似文献   

15.
Four simple, rapid, accurate, precise, reliable and economical spectrophotometric methods have been proposed for simultaneous determination of salbutamol sulphate (SS), bromhexine hydrochloride (BH) and etofylline (ET) in pure and commercial formulations without any prior separation or purification. They were first derivative zero crossing spectrophotometry (method 1), simultaneous equation method (method 2), derivative ratio spectra zero crossing method (method 3) and double divisor ratio spectra derivative method (method 4). The ranges for SS, BH and ET were found to be 1-35 μg mL−1, 4-40 μg mL−1 and 5-80 μg mL−1. For methods 1 and 2, the values of limit of detection (LOD) were 0.2314 μg mL−1, 0.4865 μg mL−1 and 0.2766 μg mL−1 and the values of limit of quantitation (LOQ) were 0.7712 μg mL−1, 1.6217 μg mL−1 and 0.9221 μg mL−1 for SS, BH and ET, respectively. For method 3, LOD values were 0.3297 μg mL−1, 0.2784 μg mL−1 and 0.7906 μg mL−1 and LOQ values were 0.9325 μg mL−1, 0.9282 μg mL−1 and 2.6352 μg mL−1 for SS, BH and ET, respectively. For method 4, LOD values were 0.3161 μg mL−1, 0.2495 μg mL−1 and 0.2064 μg mL−1 and LOQ values were 0.9869 μg mL−1, 0.8317 μg mL−1 and 0.6879 μg mL−1 for SS, BH and ET. The precision values were less then 2% R.S.D. for all four methods. The common excipients and additives did not interfere in their determinations. The results obtained by the proposed methods have been statistically compared by means of Student t-test and by the variance ratio F-test.  相似文献   

16.
For the first time, a simple and highly sensitive label-free electrochemical carcinoembryonic antigen (CEA) immunosensor based on a cryogel electrode has been developed and tested. The as-prepared nanocomposite combined the advantages of the graphene, AuNPs and chitosan (AuNPs–GP–CS) together with the ease of preparing a cryogel coupled to a silver deposition, to act as a redox mediator, on a Au electrode. Under the optimal conditions, the decrease of the cyclic voltammetry (CV) silver peak current was proportional to the CEA concentration over a range of from 1.0 × 10−6 to 1.0 ng mL−1 with a detection limit of 2.0 × 10−7 ng mL−1. This AuNPs–GP–CS cryogel electrode gave a 1.7 times higher sensitivity and 25 times lower detection limit than the non-cryogel electrode. Moreover, the proposed electrochemical immunosensor exhibited good selectivity, reproducibility and stability. When applied to analyse clinical serum samples, the data determined by the developed immunosensor were in agreement with those obtained by the current hospital analysis system (enzyme linked fluorescent assay) (P > 0.05), to indicate that the immunosensor would be potentially useful for clinical diagnostics.  相似文献   

17.
An ultrasensitive electrochemiluminescence (ECL) immunosensor based on CdSe quantum dots (QDs) has been designed for the detection of clenbuterol. The immunosensor was fabricated by layer by layer and characterized with atomic force microscopic images (AFM) and electrochemical impedance spectra (EIS). In oxygen-saturated pH = 9.0 Tris-HCl buffer, a strong ECL emission of QDs could be observed during the cathodic process due to the H2O2 product from electrochemical reduction of dissolved oxygen. Upon the formation of immunocomplex, the second antibody labeled with horseradish peroxidase was simply immobilized on the electrode surface. The ECL emission decreased since steric hindrance of the immunocomplex slowed down the electron-transfer speed of dissolved oxygen, and also could be greatly amplified by an enzymatic cycle to consume the self-produced coreactant. Using clenbuterol as model analyte, the ECL intensity was determined by the concentration of competitive immunoassay of clenbuterol with a wide calibration in the range of 0.05 ng mL−1 to 1000 ng mL−1, and a low detection limit was 0.02 ng mL−1. The immunosensor shows good stability and fabrication reproducibility. It was applied to detecting practical samples with the satisfactory results. This immunosensing strategy opens a new avenue for detection of residue and application of QDs in ECL biosensing.  相似文献   

18.
A new kind of signal amplification strategy based on ferrocene (Fc) incorporated polystyrene spheres (PS-Fc) was proposed. The synthesized PS-Fc displayed narrow size distribution and good stability. PS-Fc was applied as label to develop immunosensors for prostate specific antigen (PSA) after the typical sandwich immunoreaction by linking anti-PSA antibody (Ab2) onto PS-Fc. After the fabrication of the immunosensor, tetrahydrofuran (THF) was dropped to dissolve PS and release the contained Fc for the following stripping voltammetric detection. PS-Fc as a new electrochemical label prevented the leakage of Fc and greatly amplified the immunosensor signal. In addition, the good biocompatibility of PS could maintain the bioactivity of the antibodies. The response current was linear to the logarithm of PSA concentration in the range from 0.01 ng mL−1 to 20 ng mL−1 with a detection limit of 1 pg mL−1. The immunosensor results were validated through the detection of PSA in serum samples with satisfactory results.  相似文献   

19.
An electrochemical cold vapor generation system with polyaniline modified graphite electrode as cathode material was developed for Hg (II) determination by coupling with atomic fluorescence spectrometry. This electrochemical cold vapor generation system with polyaniline/graphite electrode exhibited higher sensitivity; excellent stability and lower memory effect compared with graphite electrode electrochemical cold vapor generation system. The relative standard deviation was 2.7% for eleven consecutive measurements of 2 ng mL− 1 Hg (II) standard solution and the mercury limit of detection for the sample blank solution was 1.3 рg mL− 1 (3σ). The accuracy of the method was evaluated through analysis of the reference materials GBW09101 (Human hair) and GBW 08517 (Laminaria Japonica Aresch) and the proposed method was successfully applied to the analysis of human hairs.  相似文献   

20.
Liying Wang 《Talanta》2009,78(1):265-3377
Based on well-known silver mirror reaction the Ag film was formed on Au film modified by self-assembled monolayer (SAM) of 1,6-hexanedithiol (HDT). The sensitivity of the biosensor based on this Ag/Au film is enhanced compared to that based on Au film. When the surface plasmon resonance (SPR) biosensor based on this Ag/Au film was used to determine human IgG, the range of concentrations of human IgG that could be determined is 0.30-40.00 μg mL−1. The lowest concentration (0.30 μg mL−1) that could be detected was about 8 times lower than that obtained by the biosensor without modification by Ag film (2.50 μg mL−1), which demonstrated that the biosensor based on Ag/Au film could make the resonant wavelength move to longer wavelength following with the sensitivity enhancement of the SPR biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号