首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
 A transition from a body-centred cubic structure at room temperature to a face-centred cubic structure at higher temperature has been observed in a solution of a poly(oxyethylene)-poly(oxybutylene) diblock copolymer. The ordered micellar structures were confirmed using small-angle X-ray scattering by preparing oriented domains via steady shearing in a Couette cell. The effect of shear in generating highly oriented, twinned cubic domains is discussed. Received: 13 January 1998 Accepted: 22 January 1998  相似文献   

3.
We investigate the mechanism of microdomain orientation in concentrated block copolymer solutions exposed to a dc electric field by in situ synchrotron small-angle X-ray scattering (SAXS). As a model system, we use concentrated solutions of a lamellar polystyrene-b-polyisoprene block copolymer in toluene. We find that both the microscopic mechanism of reorientation and the kinetics of the process strongly depend on the initial degree of order in the system. In a highly ordered lamellar system with the lamellae being aligned perpendicular to the electric field vector, only nucleation and growth of domains is possible as a pathway to reorientation and the process proceeds rather slowly. In less ordered samples, grain rotation becomes possible as an alternative pathway, and the process proceeds considerably faster. The interpretation of our finding is strongly corroborated by dynamic self-consistent field simulations.  相似文献   

4.
Micelle structure in aqueous colloids in the isotropic liquid phase (L1) of a nonionic amphipile (n-dodecyl octa(oxyethylene glycol) monoether (C12E8) has been investigated as a function of concentration and temperature using light scattering (LS), viscometry, NMR, and small-angle X-ray scattering (SAXS).The spherical micelles, having a radius of 28–31 Å, remain in a wide concentration range from very dilute to ca. 42 wt %. The micelle size increases sligthly with increasing temperature in the range of 25–60 °C. In the concentrated colloids, the spherical micelles are likely to be arranged in a certain ordered structure. Even at such a high concentration as 30 wt %, the isotropic colloid shows Newtonian flow. This suggests that interaction between micelles in the ordered structure is very weak and the structure is very fragile. Moreover, coexistence of the isotropic phase and the ordered structure in L1 phase is discussed.  相似文献   

5.
The self-assembly in aqueous solution of a PEG-peptide conjugate is studied by spectroscopy, electron microscopy, rheology and small-angle X-ray and neutron scattering (SAXS and SANS). The peptide fragment, FFKLVFF is based on fragment KLVFF of the amyloid beta-peptide, Abeta(16-20), extended by two hydrophobic phenylalanine units. This is conjugated to PEG which confers water solubility and leads to distinct self-assembled structures. Small-angle scattering reveals the formation of cylindrical fibrils comprising a peptide core and PEG corona. This constrained structure leads to a model parallel beta-sheet self-assembled structure with a radial arrangement of beta sheets. On increasing concentration, successively nematic and hexagonal columnar phases are formed. The flow-induced alignment of both structures was studied in situ by SANS using a Couette cell. Shear-induced alignment is responsible for the shear thinning behaviour observed by dynamic shear rheometry. Incomplete recovery of moduli after cessation of shear is consistent with the observation from SANS of retained orientation in the sample.  相似文献   

6.
The mechanisms of flow of a face-centred cubic micellar phase were investigated using small-angle X-ray scattering (SAXS) for samples under either steady or oscillatory shear in two different geometries: Couette cell and planar shear sandwich. The system studied was a gel formed by a poly(oxyethylene)–poly(oxypropylene) diblock copolymer in water. SAXS indicated that under steady shear in a Couette cell, flow occurs via sliding of hexagonal close-packed (hcp) layers with a close-packed [110] direction along the shear direction. Under oscillatory shear in the planar shear sandwich, coexistence between this orientation and one in which the hcp layers are rotated by 30° (and flow is in a [211] direction) was observed; however, when subject to oscillatory shear in the Couette cell, flow only occurred along a [110] direction. This observation of flow in a non-close-packed direction may be due to alignment induced by the walls of the shear sandwich. Received: 24 February 2001 Accepted: 21 March 2001  相似文献   

7.
Poly(ethylene oxide) (PEO) adsorption on colloidal silica particles was studied by small-angle neutron scattering under the core-contrast-matching condition. The volume fraction profile of the adsorbed layer was derived by modeling the average layer scattering term. It was found that, with increasing colloid concentration, the adsorbed PEO layers collapse due to the repulsions between adsorbed layers on neighboring particles. At the same time, the correlation length in the adsorbed layer obtained by fitting the layer fluctuation scattering term was found to decrease, indicating that denser polymer layers are formed. These two observations are self-consistent.  相似文献   

8.
Low-molecular-weight poly(ethylene oxide)-polyalkane (PEO-PA) diblock copolymers have been examined between the order-disorder transition and PEO melting temperature using small-angle neutron scattering (SANS), differential scanning calorimetry (DSC), and dynamic mechanical spectroscopy (DMS). Crystallization imposes layered ordering with polymer stems oriented perpendicular, or tilted, relative to the microdomain interface, thereby disrupting conventional amorphous microdomain morphologies. This effect can be used to switch the high symmetry bicontinuous ordered G phase to lower symmetry cylinders or lamellae.  相似文献   

9.
A generalized model for scattering from a collection of independent (isolated) stacks of layers enabled predictions of and parameterized fits to small-angle X-ray scattering from layered silicate dispersions. From this fundamental development, example investigations that use small-angle scattering to examine the structure of organically modified montmorillonite dispersions in toluene and toluene–acetone blends provided detailed information on the distribution of the stacks (relative concentrations, K and fraction of individual layers, χ) and characteristics of the intercalated crystallite (mean number of layers per stack, 〈N〉; layer repeat distance, D; and fractional stack disorder, δ). The analysis initially supported correlations with discotic phase behavior, which provides concise definitions for various morphologies (exfoliated, intercalated, and mixed). Finally, examination of the deviations between the scattering model and the experiment provided insights for improved experimental technique, more complete utilization of the scattering data, a sound basis for real-time observations, insight into inconsistencies between scattering and microscopy, and minimization of incorrect or overinterpretation of data. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3214–3236, 2003  相似文献   

10.
We report on small-angle neutron scattering (SANS) and X-ray scattering (SAXS) investigations of foam films stabilized by sodium dodecyl sulfate. Previous measurements on dry foams (Axelos, M. A. V.; Boue, B. Langmuir 2003, 19, 6598) have shown the presence of spikes in the two-dimensional scattering data which suggest that the incident beam is reflected on some film surfaces. The latter interpretation is confirmed by new neutron studies performed on ordered ("bamboo") foams which allow selection of single films. In the first case, we show that the spikes of the scattered intensity can be obtained by reflection on two parts of the foam, namely, the films and the Plateau borders. With synchrotron radiation, first observations of distinct interference fringes have allowed an accurate determination of the film thickness. A comparison with X-ray and neutron data is made, opening a general discussion about the capabilities of small-angle scattering techniques for studying the microscopic properties of foam films.  相似文献   

11.
In micellar solutions of sodium dodecyl sulfate, as the concentration of surfactants increases, the spheroid shape of the micelles changes from almost spherical to ellipsoidal with increasing ratio of half-axes ratio, and further the transition to cylindrical micelles occurs. The micelles in an aqueous solution can directly contact (compact aggregates) or be separated from one another by layers of intermicellar medium (periodical colloid structures). In the latter case, the thickness of the layer can significantly exceed the micelle size, and then no mutual correlation in micelle arrangement is observed. According to the data of small-angle X-ray scattering, the relationship between the surfactant concentration and formation of “quasi-crystalline” micellar structure is nonlinear, which can be due to both micelle aggregation processes and nonuniformity of their structure. The possible influence of ordered micellar structures on the diffusion mobility of micelles is shown.  相似文献   

12.
Analytical expressions for the scattering functions of ordered mesoscopic materials are derived and compared to experimentally determined scattering curves. Ordered structures comprising spheres (fcc, bcc, hcp, sc), cylinders (hex, sq), and lamellar structures are considered. The expressions take into account particle size distributions and lattice point deviations, domain size, core/shell structures, as well as peak shapes varying analytically between Lorentzian and Gaussian functions. The expressions allow one to quantitatively describe high-resolution synchrotron small-angle X-ray (SAXS) and neutron scattering (SANS) curves from lipid and block copolymer lyotropic phases, core/shell nanoparticle superstructures, ordered nanocomposites, and ordered mesoporous materials. In addition, the diffuse out-of-plane scattering of grazing incidence GISAXS and GISANS experiments of laterally ordered thin films can be quantitatively analyzed.  相似文献   

13.
Summary The shear orientation of a micellar hexagonal liquid crystalline phase was investigated by small-angle neutron scattering. The hexagonal phase in the quiescent state showed a symmetrical scattering pattern typical of a polydomain structure. Enhanced scattering along the flow direction was observed during shear and the anisotropy of scattering intensity became stronger with increasing shear rate. The anisotropic scattering pattern corresponds to an orientation perpendicular to the flow direction and can be interpreted as a log-rolling state. The oriented sample did not relax after cessation of shear. The results from small-angle neutron scattering confirm data obtained previously from rheo-small angle light scattering measurements and are discussed in comparison to shear alignment of lyotropic liquid crystalline polymer solutions.  相似文献   

14.
The internal nanostructure resulting from microphase separation in triblock copolymer films of polyparamethylstyrene-block-polystyrene-block-polyparamethylstyrene, P(pMS-b-Sd8-b-pMS), has been investigated with grazing incidence small angle neutron scattering (GISANS). X-ray reflectivity, grazing incidence small-angle X-ray scattering (GISAXS), optical microscopy and atomic force microscopy (AFM) complement the investigation. The influence of two limiting interfaces present in confinement is compared to the presence of only one surface. GISANS allows for the detection of structures in the very limited sample volume of confined films as well as for a depth sensitivity to probe the near free surface part of bulk films. With respect to the surface a perpendicular oriented lamella is observed. In contrast to the shrinkage of the characteristic lamellar spacing in confinement at the free surface, a slight increase is determined.  相似文献   

15.
The orientation of platelets in micro-meter-thick polymer-clay nanocomposite films was investigated with small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and wide-angle X-ray diffraction (WAXD). The films with various clay contents (15–60% by mass fraction) were prepared by a layer-by-layer approach from polymer-clay solutions that led to the formation of a high degree of orientation in both polymer and clay platelets. Shear-induced orientation of polymer-clay solutions is compared with the orientation of polymer-clay films. SANS, SAXS, and WAXD, with beam configurations in and perpendicular to the spread direction of the film, were used to determine the structure and orientation of platelets. In all films, the clay platelets oriented preferentially in the plane of the film. The observed differences in semidilute solutions, with clay surface normal parallel to the vorticity direction, versus bulk films and with clay surface normal parallel to the shear gradient direction at clay mass fractions of 40 and 60%, were attributed to the collapses of clay platelet during the drying process. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3237–3248, 2003  相似文献   

16.
The assembly of colloidal particles in a nematic liquid crystal has been investigated using small-angle X-ray scattering. The structure and orientation of nanoparticle assemblies in bulk samples of aligned nematic liquid crystal have been determined. The method offers some advantages over optical microscopy, which is usually restricted to investigations of thin cells and micron-sized particles. The scattering from chains of particles has been calculated, and comparison with experimental results has shown that suspensions of 48 and 105 nm diameter silica nanoparticles formed highly ordered structures perpendicular to the liquid crystal director, consistent with quadrupolar defect-induced assembly.  相似文献   

17.
The structure and flow behaviour of binary mixtures of Pluronic block copolymers P85 and P123 is investigated by small-angle scattering, rheometry and mobility tests. Micelle dimensions are probed by dynamic light scattering. The micelle hydrodynamic radius for the 50/50 mixture is larger than that for either P85 or P123 alone, due to the formation of mixed micelles with a higher association number. The phase diagram for 50/50 mixtures contains regions of cubic and hexagonal phases similar to those for the parent homopolymers, however the region of stability of the cubic phase is enhanced at low temperature and concentrations above 40 wt%. This is ascribed to favourable packing of the mixed micelles containing core blocks with two different chain lengths, but similar corona chain lengths. The shear flow alignment of face-centred cubic and hexagonal phases is probed by in situ small-angle X-ray or neutron scattering with simultaneous rheology. The hexagonal phase can be aligned using steady shear in a Couette geometry, however the high modulus cubic phase cannot be aligned well in this way. This requires the application of oscillatory shear or compression.  相似文献   

18.
Small-angle scattering (SAS) techniques, like small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS), were used to measure and thus to validate the accuracy of a novel technology for virus sizing and concentration determination. These studies demonstrate the utility of SAS techniques for use in quality assurance measurements and as novel technology for the physical characterization of viruses.  相似文献   

19.
Nonaethylene glycol and pentadecaethylene glycol and their dimethyl ethers have been prepared and characterized, with respect to crystallinity by wide- and small-angle X-ray scattering, Raman scattering, i.r. spectroscopy and differential scanning calorimetry. Wide-angle X-ray scattering is similar to that from high molecular weight poly(ethylene oxide). The crystal habit is lamella. The lamellae are highly crystalline and the surface layers are ordered. Comparison with crystalline poly(ethylene oxide) prepared conventionally, and having a distribution of chain lengths, shows that such samples crystallize into lamellae with disordered surface layers.  相似文献   

20.
Large-scale alignment of lamellae in thin films of diblock copolymers containing polyacrylonitrile and poly(n-butyl acrylate) was achieved by casting copolymer solution on a silicon substrate moved away at a constant speed from the casting nozzle (zone-casting). Grazing incidence small-angle X-ray scattering revealed that the lamellae, which were perpendicular to the substrate, were also aligned over macroscopic scale in the direction perpendicular to the casting direction. Such long-range ordered block copolymer films were then converted by pyrolysis into nanostructured carbons, with excellent preservation of lamellar morphology and orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号