首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An analytical investigation is carried out on the free vibration of a two degree of freedom weakly nonlinear oscillator. Namely, the method of multiple time scales is first applied in deriving modulation equations for a van der Pol oscillator coupled with a Duffing oscillator. For the case of non-resonant oscillations, these equations are in standard normal form of a codimension two (Hopf-Hopf) bifurcation, which permits a complete analysis to be performed. Three different types of asymptotic states-corresponding to trivial, periodic and quasiperiodic motions of the original system-are obtained and their stability is analyzed. Transitions between these different solutions are also identified and analyzed in terms of two appropriate parameters. Then, effects of a coupling, a detuning, a nonlinear stiffness and a damping parameter are investigated numerically in a systematic manner. The results are interpreted in terms of classical engineering terminology and are related to some relatively new findings in the area of nonlinear dynamical systems.  相似文献   

3.
This paper presents a novel approach to obtaining a complete set of time-dependent expressions for approximate conservation laws of two weakly non-linear coupled oscillators. The procedure developed for a non-resonant case is based on the field method concept of deriving a conservation law from an incomplete solution of a partial differential equation. Due to the non-linearity of the system being considered, this concept is combined with the multiple variable expansion procedure.  相似文献   

4.
The scaling of the solution of coupled conservative weakly nonlinear oscillators is demonstrated and analyzed through evaluating the normal modes and their bifurcation with an equivalent linearization technique and calculating the general solutions with a method of multiple seales. The scaling law for coupled Duffing oscillators is that the coupling intensity should be proportional to the total energy of the system.Present address: Department of Chemistry and Chemistry and Chemical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, U.S.A.  相似文献   

5.
Dynamics of two delay coupled van der Pol oscillators   总被引:1,自引:0,他引:1  
In this paper, the dynamics of a system of two van der Pol oscillators with delayed position and velocity coupling is studied by the method of averaging together with truncation of Taylor expansions. According to the slow-flow equations, the dynamics of 1:1 internal resonance is more complex than that of non-1:1 internal resonance. For 1:1 internal resonance, the stability and the number of periodic solutions vary with different time delay for given coupling coefficients. The condition necessary for saddle-node and Hopf bifurcations for symmetric modes, namely in-phase and out-of-phase modes, are determined. The numerical results, obtained from direct integration of the original equation, are found to be in good agreement with analytical predictions.  相似文献   

6.
A perturbation method is used to study the steady state behavior of two Van der Pol oscillators with strong linear diffusive coupling. It is shown that a bifurcation occurs which results in a transition from phase-locked periodic motions to quasi-periodic motions as the coupling is decreased or the detuning is increased. The analytical results are compared with a numerically generated solution.  相似文献   

7.
We consider two linearly coupled masses, where one mass can have inelastic impacts with a fixed, rigid stop. This leads to the study of a two degree of freedom, piecewise linear, frictionless, unforced, constrained mechanical system. The system is governed by three types of dynamics: coupled harmonic oscillation, simple harmonic motion and discrete rebounds. Energy is dissipated discontinuously in discrete amounts, through impacts with the stop. We prove the existence of a non-zero measure set of orbits that lead to infinite impacts with the stop in a finite time. We show how to modify the mathematical model so that forward existence and uniqueness of solutions for all time is guaranteed. Existence of hybrid periodic orbits is shown. A geometrical interpretation of the dynamics based on action coordinates is used to visualize numerical simulation results for the asymptotic dynamics.  相似文献   

8.
We determine regions of synchronization of two and three globally coupled oscillators and describe the main mechanisms and bifurcations through which the synchronization of systems is lost.Published in Neliniini Kolyvannya, Vol. 7, No. 3, pp. 311–327, July–September, 2004.  相似文献   

9.
Das  Saureesh  Bhardwaj  Rashmi 《Nonlinear dynamics》2021,104(3):2127-2144
Nonlinear Dynamics - In this work, we study the complex dynamics and synchronization of two coupled Duffing-type circuits within the framework of recurrence quantification analysis (RQA). For the...  相似文献   

10.
The dynamical behavior of two coupled parametrically excited van der pol oscillators is investigated in this paper. Based on the averaged equations, the transition boundaries are sought to divide the parameter space into a set of regions, which correspond to different types of solutions. Two types of periodic solutions may bifurcate from the initial equilibrium. The periodic solutions may lose their stabilities via a generalized static bifurcation, which leads to stable quasi-periodic solutions, or via a generalized Hopf bifurcation, which leads to stable 3D tori. The instabilities of both the quasi-periodic solutions and the 3D tori may directly lead to chaos with the variation of the parameters. Two symmetric chaotic attractors are observed and for certain values of the parameters, the two attractors may interact with each other to form another enlarged chaotic attractor.  相似文献   

11.
We study a Hamiltonian system of coupled oscillators derived from two forced pendulums, connected with a torsional spring. The uncoupled limit is described by two identical oscillators, each possessing a homoclinic orbit separating bounded from unbounded motion. We focus on intermediate energy levels which lead to detained motions, defined as trajectories that, though unbounded as t → ∞, oscillate within the region defined by the homoclinic orbit of the unperturbed system for a long but finite time. We analyze the existence and behavior of these motions in terms of equipotential surfaces. These curves provide bounds on the motion of the system and are shown to be closed for low energies. However, above some critical energy level the equipotential curves become open. The detained trajectories are shown to arise from the region of phase space that was, for appropriate energies, stochastic. These motions remain within this region for long times before finally “leaking out” of the opening in the equipotential curves and proceeding to infinity.  相似文献   

12.
An algorithm is developed for the construction of an invariant torus of a weakly coupled autonomous oscillator. The system is put into angular standard form. The determining equations are found by averaging and are solved for the approximate amplitudes of the torus. A perturbation series is then constructed about the approximate amplitudes with unknown coefficients as periodic functions of the angular variables. A sequence of solvable partial differential equations is developed for determining the coefficients. The algorithm is applied to a system of nonlinearly coupled van der Pol equations and the first order coefficients are generated in a straightforward manner. The approximation shows both good numerical accuracy and reproducibility of the periodicities of the van der Pol system. A comparitive analysis of integrating the van der Pol system with integrating the phase equations from the angular standard form on the approximate torus shows numerical errors of the order of the perturbation parameter =0.05 for integrations of up to 10,000 steps. Applying FFT to the numerical periodicities generated by integrating the van der Pol system near the tours reveals the same predominant frequencies found in the perturbation coefficients. Finally an expected rotation number is found by integrating the phase equations on the approximate torus.Contribution of the National Institute of Standards and Technology, a Federal agency.  相似文献   

13.
The present paper reports some interesting phenomena observed in the nonlinear dynamics of two self-excitedly coupled harmonic oscillators. The system under consideration consists of two mechanical oscillators coupled by the Rayleigh type self-exciting force. Both autonomous and nonautonomous cases for weakly coupled systems are analyzed. When the natural frequencies of the two oscillators are close to each other, only one mode of oscillation exists. As two modes of oscillations get locked to a single mode, the system is said to be in a mode-locked condition. Under a mode-locked condition, the oscillators can oscillate with only a single frequency. However, when two oscillators are sufficiently detuned, the mode-locking condition does not persist and two distinct modes of oscillations emerge. Under these circumstances, particularly when detuning is large, one of the oscillators, depending on the initial conditions, oscillates with much larger amplitude as compared to the other oscillator, and hence mode localization is observed. When one of the oscillators is subject to a harmonic excitation, at two different frequencies, termed here as the decoupling frequencies, the coupling between the oscillators is almost lost, resulting in almost zero response of the unexcited oscillator. Analytical and numerical results are presented to analyze the above mentioned phenomena. Some potential applications of the aforesaid phenomena are also discussed.  相似文献   

14.
15.
The development of vibrations in a one-dimensional chain of coupled oscillators is studied. Under the assumption that the interaction between oscillators is weakly nonlinear the methods of nonlinear mechanics are used to find the time dependence of the displacements of elements of the chain after an initial displacement is given one of the links. The main features of the development of vibrations are shown. A comparison is made with the results of the linear theory.  相似文献   

16.
Kerr oscillators are model systems which have practical applications in nonlinear optics. Optical Kerr effect, i.e., interaction of optical waves with nonlinear medium with polarizability χ (3) is the basic phenomenon needed to explain, for example, the process of light transmission in fibers and optical couplers. In this paper, we analyze the two Kerr oscillators coupler and we show that there is a possibility to control the dynamics of this system, especially by switching its dynamics from periodic to chaotic motion and vice versa. Moreover, the switching between two different stable periodic states is investigated. The stability of the system is described by the so-called maps of Lyapunov exponents in parametric spaces. Comparison of basins of attractions between two Kerr couplers and a single Kerr system is also presented.  相似文献   

17.
18.
We investigate the slow flow resulting from the application of the two variable expansion perturbation method to a system of two linearly coupled van der Pol oscillators. The slow flow consists of three non-linear coupled odes on the amplitudes and phase difference of the oscillators. We obtain regions in parameter space which correspond to phase locking, phase entrainment and phase drift of the coupled oscillators. In the slow flow, these states correspond respectively to a stable equilibrium, a stable limit cycle and a stable libration orbit. Phase entrainment, in which the phase difference between the oscillators varies periodically, is seen as an intermediate state between phase locking and phase drift. In the slow flow, the transitions between these states are shown to be associated with Hopf and saddle-connection bifurcations.  相似文献   

19.
This paper presents the experimental results of random excitation of a nonlinear two-degree-of-freedom system in the neighborhood of internal resonance. The random signals of the excitation and response coordinates are processed to estimate the mean squares, autocorrelation functions, power spectral densities, and probability density functions. The results are qualitatively compared with those predicted by the Fokker-Planck equation together with a non-Gaussian closure scheme. The effects of system damping ratios, nonlinear coupling parameter, internal detuning ratio, and excitation spectral density level are considered in both studies except the effect of damping ratios is not considered in the experimental investigation. Both studies reveal similar dynamic features such as autoparametric absorber effect and stochastic instability of the coupled system. The experimental results show that the autocorrelation function of the coupled system has the feature of ultra narrow band process and degenerates to a periodic one as the internal detuning departs from the exact internal resonance condition. The measured probability density functions of the response of the main system suggests that the Gaussian representation is sufticient as long as the excitation level is relatively low in the neighborhood of the system internal resonance condition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号