首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein foam was explored as a foaming agent for enhanced oil recovery application in this study. The influence of salinity and oil presence on bulk stability and foamability of the egg white protein (EWP) foam was investigated. The results were compared with those of the classical surfactant sodium dodecyl sulfate (SDS) foam. The results showed that the EWP foam is more stable than the SDS foam in the presence of oil and different salts. Although, the SDS foam has more foamability than the EWP foam, however, at low to moderate salinities (1–3 wt% NaCl), both foam systems showed improvement in foamability. At a NaCl concentration of 4.0 wt% and above, foamability of the SDS foam started to decrease drastically while the foamability of the EWP foam remained the same. The presence of oil has a destabilizing effect on both foams but the EWP foam was less affected in comparison to the SDS foam. Moreover, increasing the aromatic hydrocarbon compound percentage in the added oil decreased the foamability and stability of the SDS foam more than EWP foams. This study suggests that the protein foam could be used as an alternative foaming agent for enhanced oil recovery application due to its high stability compared to the conventional foams.  相似文献   

2.
Thermally stable sulfated zirconia catalysts were synthesized via a new templating procedure and compared with standard zirconia materials prepared by precipitation without templates. Two preparation routes with various amphiphilic systems were employed as structure directing agents: (1) synthesis with hexadecyltrimethylammonium bromide, and (2) combined use of surfactant Brij-56® and triblock-copolymer Pluronic P123®. The formation of materials was characterized by TEM, SEM, X-ray diffraction as well as nitrogen adsorption and mercury intrusion techniques. Different self-assembling properties of the structure directing compounds led to sulfated zirconia materials exhibiting improved morphological and structural properties in terms of thermal stability, specific surface areas, pore diameters and porosity factors. Notably, hierarchical pore structures were obtained for the synthesis route via a combined use of Brij-56® and P123®. Moreover, the morphological features of these materials were evidenced by a significantly improved isomerization activity of n-butane.  相似文献   

3.
A general and potentially easy method for synthesizing TiO2 ceramic foams presenting hierarchical architecture of meso and macropores is presented here. The ceramics foaming method is based on the integration of the sol?Cgel process with sodium dodecyl sulfate (SDS) surfactant and oil droplets of isopropyl myristate (IPM) as dual pore templates. The main aim of this study was to evaluate the effect of ionic surfactant on the porous structure and specific surface area. The structural feature of these materials was characterized by analyzes of X-ray diffraction, nitrogen absorption/desorption isotherms, Hg porosimetry, He and Dried-Fluid? picnometers. Mercury intrusion porosimetry shows that SDS and IPM induce the formation of hierarchical structure composed of two families of pores, namely macro and mesopores. The relative population of each family and the average size of macropores could be finely tuned by adjusting the SDS quantity. In the presence of this surfactant, a single anatase crystalline phase was observed for titania foams fired at 600?°C.  相似文献   

4.
Alumina doping and sulfation in hierarchically porous zirconia solid acids have been achieved simultaneously via one‐pot and bi‐surfactant‐assisted self‐assembly process, using aluminum sulfate as both Al and SO42? sources. The prepared composite solid acids showed much enhanced acidity and recycling catalytic activity for an esterification reaction compared with sulfated zirconia without alumina doping and Al‐doped sulfated zirconia without hierarchically porous structure.  相似文献   

5.
Mesoporous tetragonal sulfated zirconia with high surface area and narrow pore-size distribution was prepared using Zr(O-nPr)_4 as zirconium precursor,sulfuric acid as sulfur source and triblock copolymer poly(ethylene glycol)-poly(propylene glycol)-poly (ethylene glycol)(P123) as the template.The samples were characterized by X-ray diffraction,N_2 sorption,TEM,and NH_3-TPD. A phase transformation from monoclinic sulfated zirconia to tetragonal sulfated zirconia is observed.The product shows strong acidi...  相似文献   

6.
The mixed adsorption of a cationic gemini surfactant, ethanediyl-1,2-bis(dodecyldimethylammonium bromide) (abbreviated as 12-2-12), and an anionic conventional surfactant, sodium dodecyl sulfate (SDS), was examined using surface tension measurements. The viscoelastic properties of the mixed films were investigated by dilational interfacial rheology technique. The results showed that the addition of SDS promoted the close packing of adsorbed molecules at the interface, which increased the dilational elasticity of the mixed films. The stability of the foams was determined by the half-life of foam height collapse. The foams generated by 12-2-12/SDS mixtures were more stable than that formed by pure 12-2-12. In the presence of sodium bromide, the foam stability was further enhanced and the surfactant concentration required to attain the maximum effect in stabilizing foams was greatly reduced. The high foam stability could well relate to the high elasticity of the film.  相似文献   

7.
Ultra-lightweight cellulose foams were prepared by regeneration of sodium dodecyl sulfate (SDS)/cellulose/NaOH/urea blend solution via mechanical agitation and then freeze-drying. The morphology and properties of the blend solutions and foams were investigated via optical microscope, rheometer, BET and SEM. As a result, it was found that the inclusion complex structure between cellulose macromolecules and the solvent molecules was not destroyed. Moreover, the bubbles were about 20–50 μm in the solutions and larger (>100 μm) in the foams. Not only the micropores (bubbles) but also the nanopores could be observed in the wet and dried foams. The cellulose foams possessed ultra-low density of about 30 mg/cm3 and high specific surface area. The result of X-ray diffraction and Fourier transform infrared spectroscopy indicated that the cellulose foams were transited from cellulose I to cellulose II after dissolution and gelation. Bubbles inside the wet foams weakened the mechanical properties, but inversely increased the mechanical properties in the dried foams. Typical “J”-shaped curves were observed during the mechanical test, which revealed good compressive strength of dried foams. In this work, cellulose foams with ultra-lightweight and good mechanical properties were obtained, which exhibited great potentials for further development and comprehensive utilization of cellulose.  相似文献   

8.
SBA-15 organosilicas containing amine, thiol, vinyl and phenyl pendant groups were synthesized by co-condensation of tetraethoxysilane and appropriate alkoxysilanes in the presence of Pluronic P123 surfactant. The obtained materials have usually well-developed porous structure—values of specific surface area are in the range 820–950 m2/g. Sizes of the ordered mesopores are in the range 7.5–9.1 nm while the interconnecting pores are 2.3–3.1 nm in size. It was establish that size of the mesopores strongly depends even on small amounts of co-monomers co-condensing with tetraethoxysilane. Several instrumental techniques such as infrared spectroscopy, X-ray diffraction, nitrogen sorption measurements, elemental analysis, transmission electron microscopy. FT-IR photoacoustic spectroscopy (FT-IR/PAS) was used to determine chemical composition of the final materials and to monitor the efficiency of the template removal.  相似文献   

9.
High surface area mesoporous titanium dioxide (TiO2) particles have been prepared by three different kinds of colloidal aphrons: colloidal gas aphrons, colloidal liquid aphrons, and colloidal emulsion aphrons (CEAs). The precipitate of amorphous TiO2 was prepared by hydrolysis, condensation, and polycondensation reaction of the precursor. The reaction took place under the effect of coulombic repulsion and electrostatic layers of multilayer surfactant molecules. TiO2 particles with various sizes were prepared with different molar ratio of titanium ion to surfactants, which were sodium lauryl sulfate (SDS), cetyltrimetyhlammonium bromide, triblock copolymer Pluronic P123, and triblock copolymer Pluronic F127. The synthesized samples were characterized by X-ray diffraction, Brunauer-Emmett-Teller analysis, N2 adsorption/desorption, and transmission electron microscopy. The mesoporous TiO2 prepared by CEAs method showed a high specific surface area of 224 m2/g with the total pore volume of 0.7751 cm3/g by using SDS as the membrane phase surfactant due to electrostatic attraction favors of anionic surfactant. The solar conversion efficiency of the cell made from TiO2 increases with the combination of increased surface area and total pore volume for higher amount of dye wetting and loading.  相似文献   

10.
Fe-ZrO2 and Cu-ZrO2 xerogels were prepared by a sol-gel method. The effect of the hydrolysis catalyst during the gelation step, namely H2SO4 or NH4OH, on the properties of the resulting materials was investigated by XRD, BET, TGA/DTA, TPD of ammonia, FTIR, and TPR. Fe-ZrO2 and Cu-ZrO2 xerogels, with sulfuric acid introduced as the hydrolysis catalyst, mainly crystallyzed in the tetragonal phase and exhibited larger surface area and acid amount than those obtained with NH4OH. Ammonia TPD shows that copper promoted sulfated zirconia is the most acidic material. TGA and FTIR reveal that under oxidizing conditions sulfated zirconia promoted with iron and copper retains more sulfate species than unpromoted sulfated zirconia. Regardless of the hydrolysis catalyst employed, copper promoted catalysts calcined at 600°C, contain a large fraction of copper oxide specieseasily reduced at low temperatures. These copper oxide species are believed to have different environment and interactions with the surface oxygen vacancies of the zirconia support. A FeO-like phase appears to be the most probable one after reduction of Fe-ZrO2 catalysts prepared with NH4OH as the hydrolysis catalyst. The formation of Fe° species may be hindered by the high dispersion and interaction of Fe2+ ions with the zirconia support. On the other hand, the reduction peaks of iron oxide and sulfate species exhibit a considerable overlap in the TPR profiles of sulfated Fe-ZrO2 samples. Hence, the nature of the supported phase in the latter samples is rather uncertain.  相似文献   

11.
Pd-based sulfated zirconia catalysts have been prepared through a single step (one-pot) sol–gel preparation technique, in which both sulfate and Pd precursors were dissolved in an organic solution before the gelation step. Observation of the calcination procedure through TGA/DSC and mass spectrometry revealed that the addition of increasing amounts of Pd resulted in the evolution of organic precursor species at lower temperatures. In situ XRD experiments showed that tetragonal zirconia is formed at lower temperatures and larger zirconia crystallites are formed when Pd is added to the gel. Although tetragonal zirconia was the only phase observed through XRD, Raman spectra of samples calcined at 700 °C showed the presence of both the tetragonal and the monoclinic phase, indicating a surface phase transition. DRIFTS experiments showed NO species adsorbed on Pd2+ cations. Pd/SZ catalysts prepared through this single step method were active for the reduction of NO2 with CH4 under lean conditions. Calcination temperature had a significant effect on this activity, with samples calcined at 700 °C being much more active than those calcined at 600 °C, despite the observed transition to the monoclinic phase. This activity may be linked to observed changes in the surface sulfate species at higher calcination temperatures.  相似文献   

12.
The condensation reaction of 2-aminobenzamide and aldehydes or ketones was investigated in the presence of nanocrystalline sulfated zirconia (SO4 2?/ZrO2) as solid acid catalyst. SO4 2?/ZrO2 nanoparticles with different calcination temperatures were prepared and characterized by XRD, FT-IR and SEM techniques. The results confirm good stabilization of tetragonal phase of zirconia in the presence of sulfate. The reusability experiments show partial deactivation of the catalyst due to leaching of the sulfate and coke deposition on the catalyst.  相似文献   

13.
An apparatus containing a visual porous medium plate model and digital video recorder was employed to investigate the transportation of foam stabilized by sodium polyoxyethylene alkylether sulfate (AES), sodium dodecyl benzene sulfonate (SDBS) and TritonX-100 in porous medium. The results showed that transfiguration and fracture were the main transport manners for foam in the porous medium at high gas and liquid transfusion rate. The increase in probability of transfiguration in foam transport process corresponded to the higher flow impedance. A simple U-shape device was designed to investigate the rigidity of surfactant layer at the gas/liquid interface, and the equilibrium surface tension was assigned to be the key parameter which manifests the rigidity of surfactant interface layer. The dynamic surface tension of different surfactant system has also been measured, and the parameters gotten by Rosen model might be the measurement of dynamic elasticity of surfactant interface layer. There is consanguineous relation between the equilibrium surface activity or dynamic activity of the surfactants and the transport of the foam in the porous medium.  相似文献   

14.
The method of creating pressure drops in liquid phases of foams (foam pressure drop technique) is employed to study the influence of Plateau-Gibbs border radius and surface viscosity on the velocity of liquid flows through foams. Sodium dodecyl sulfate-stabilized foams with Newtonian black films and foams stabilized with 9,6-ethoxylated nonylphenol (Triton X-10 0) are investigated. A method is developed for determining the velocities of nonstationary syneresis in local layers of foams. The measured flow velocities correspond to those calculated through the Nguyen equation for sodium dodecyl sulfate solution foams with constant curvature radii and for local layers of foams at curvature radii varying in the range of 20–80 fum and variable pressure drops. In Triton X-100 solution foams, experimentally measured syneresis velocities are higher than those calculated by the Lemlich and Nguyen equations but agree with the velocities calculated via the Koehler equation at permeability K 0 n varying in the range of 0.5 × 10-3-2 × 10-3 under the assumption that the key factor is the hydrodynamic resistance in foam knots.  相似文献   

15.
Foamed poly(vinyl alcohol) (PVA) cryogels are studied. Such heterogeneous gel composites are formed as a result of the cryogenic treatment (freezing—storage in a frozen state—thawing) of water— PVA liquid foams in the absence and presence of surfactants. It is shown that the addition of ionic and nonionic surfactants to an aqueous PVA solution and its subsequent foaming result in the formation of liquid foam whose stability is lower than that of the foam prepared from an aqueous PVA solution in the absence of surfactant, i.e., surfactants cause a destabilizing effect on the foams containing PVA. Gas-filled PVA cryogels formed as a result of freezing—thawing of such foams contain large (up to ~180 μm) pores (air bubbles incorporated into the matrix of heterogeneous gel). Mechanical and thermal properties of cryogels depend on the nature and concentration of surfactants, as well as on the regime of cryogenic treatment. The rigidity of foamed PVA cryogels prepared in the presence of sodium dodecyl sulfate and cetyltrimethylammonium bromide ionic surfactants is lower and that in the presence of nonionic decaoxyethylene cetyl ether is higher than for equiconcentrated (by the polymer) foamed PVA cryogel containing no surfactant. Microscopic studies and the analysis of obtained images of cryogel structure demonstrate that the effect of surfactant on the morphology of freezing foam can be different, depending on the type of surfactant added to the initial system. This leads to foam-destabilizing effects such as the collapse, deformation, and coalescence of air bubbles; the failure of gel phase structure near the bubble surface; etc. However, the complete disintegration of the foamed structure is prevented by a very high viscosity of the unfrozen liquid microphase of a macroscopically solid sample and by the cryotropic PVA gelation that fixes the structure of partially destroyed foam.  相似文献   

16.
The properties and extraction for [Ni(NH3)6]2+ of anionic aqueous two-phase systems (ATPS-a) that formed in mixtures of cetyltrimethylammonium bromide (CTAB) and excess sodium dodecyl sulfate (SDS) aqueous solutions were investigated. The results showed that the properties and extraction effects were strongly affected by the surfactant concentration, the temperature of system, and the mole fraction of surfactants. The increase of temperature induces narrower phase region and larger phase volume ratio. In addition, [Ni(NH3)6]2+ was extracted into the surfactant-rich phase with higher distribution coefficient when the liquid crystal had the birefringent properties. Moreover, the distribution coefficient can be improved through reducing the concentration of surfactant from 0.15 to 0.05 mol · L?1 or increasing mole fraction of CTAB from 21.9% to 23.1%. The results showed that ATPS of cationic–anionic surfactants was efficient for [Ni(NH3)6]2+ extraction with distribution coefficients of 13.5 when the total surfactant concentration was 0.05 mol · L?1, mole fraction of CTAB was 21%, and temperature was 34°C.  相似文献   

17.
The objective of this research work was to study the relationship among the apparent viscosity of bulk foam, the viscoelasticity of liquid films, and foam stability. Bulk foam tests showed that the drainage half-life of AOS foam was higher than that of sodium dodecyl sulfate (SDS) and hexadecyltrimethyl ammonium bromide (CTAB) foams. The results of foam apparent viscosity revealed that the foam apparent viscosity was related to foam quality rather than foam stability. Higher film viscoelasticity modulus could be assigned for α -olefin sulfonate (AOS) films than those for SDS and CTAB ones. The film conductivity tests indicated that AOS liquid films, compared with SDS and CTAB liquid films, could delay the liquid drainage speed under dynamic conditions. Compared with foam apparent viscosity, the viscoelasticity of liquid films appeared to be a key factor in foam stability.  相似文献   

18.
Lithium-rich manganese oxide (Li2MnO3) is prepared by reverse microemulsion method employing Pluronic acid (P123) as a soft template and studied as a positive electrode material. The as-prepared sample possesses good crystalline structure with a broadly distributed mesoporosity but low surface area. As expected, cyclic voltammetry and charge–discharge data indicate poor electrochemical activity. However, the sample gains surface area with narrowly distributed mesoporosity and also electrochemical activity after treating in 4 M H2SO4. A discharge capacity of about 160 mAh g?1 is obtained. When the acid-treated sample is heated at 300 °C, the resulting porous sample with a large surface area and dual porosity provides a discharge capacity of 240 mAh g?1. The rate capability study suggests that the sample provides about 150 mAh g?1 at a specific discharge current of 1.25 A g?1. Although the cycling stability is poor, the high rate capability is attributed to porous nature of the material.  相似文献   

19.
以表面活性剂十二烷基磺酸钠为辅助模板剂,合成了具有较高稳定性的介孔二氧化锆。 采用TG、XRD、FT-IR以及N2吸附-脱附等测试技术对产物进行了表征。 研究结果表明,以阴离子型表面活性剂为模板合成的二氧化锆前驱体具有层状介孔结构,经过NaOH溶液处理后再经500 ℃煅烧仍能保持其介孔结构,显示了良好的热稳定性。 在表面活性剂脱除后得到双孔分布的孔结构,其孔壁为四方晶相结构。 NaOH对其结构的形成起到了关键作用。  相似文献   

20.
In this work, the interaction between the anionic surfactant sodium dodecyl sulfate (SDS) and the polyelectrolyte complex hydrolyzed polyacrylamide/poly(4-vinylpyridine) (AD37–P4VP) in aqueous solution was investigated by conductometric measurements. Three main series with SDS concentrations of 0.01, 0.25 and 1 % and in a wide range of P4VP and AD37 concentrations, from 0.1 × 10?4 to 4 × 10?4 g/ml, and from 10?4 to 10?3 g/ml, respectively, were studied. The polyelectrolyte complex interacts strongly with the SDS surfactant. These interactions are of electrostatic and hydrophobic types. Thus, the effect of salt on the critical micelle concentration of SDS, and the neutralization degree on behavior conductivity of the mixture, were quantified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号