首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stationary response of Duffing oscillator with hardening stiffness and fractional derivative under Gaussian white noise excitation is studied. First, the term associated with fractional derivative is separated into the equivalent quasi-linear dissipative force and quasi-linear restoring force by using the generalized harmonic balance technique, and the original system is replaced by an equivalent nonlinear stochastic system without fractional derivative. Then, the stochastic averaging method of energy envelope is applied to the equivalent nonlinear stochastic system to yield the averaged Itô equation of energy envelope, from which the corresponding Fokker–Planck–Kolmogorov (FPK) equation is established and solved to obtain the stationary probability densities of the energy envelope and the amplitude envelope. The accuracy of the analytical results is validated by those from the Monte Carlo simulation of original system.  相似文献   

2.
A stochastic averaging method is proposed for nonlinear energy harvesters subjected to external white Gaussian noise and parametric excitations. The Fokker–Planck–Kolmogorov equation of the coupled electromechanical system of energy harvesting is a three variables nonlinear parabolic partial differential equation whose exact stationary solutions are generally hard to find. In order to overcome difficulties in solving higher dimensional nonlinear partial differential equations, a transformation scheme is applied to decouple the electromechanical equations. The averaged Itô equations are derived via the standard stochastic averaging method, then the FPK equations of the decoupled system are obtained. The exact stationary solution of the averaged FPK equation is used to determine the probability densities of the displacement, the velocity, the amplitude, the joint probability densities of the displacement and velocity, and the power of the stationary response. The effects of the system parameters on the output power are examined. The approximate analytical outcomes are qualitatively and quantitatively supported by the Monte Carlo simulations.  相似文献   

3.
The first-passage failure of a single-degree-of-freedom hysteretic system with non- local memory is investigated. The hysteretic behavior is described through a Preisach model with excitation selected as Gaussian white noise. First, the equivalent nonlinear non-hysteretic sys- tem with amplitude-dependent damping and stiffness coefficients is derived through generalized harmonic balance technique. Then, equivalent damping and stiffness coefficients are expressed as functions of system energy by using the relation of amplitude to system energy. The stochastic aver- aging of energy envelope is adopted to accept the averaged It5 stochastic differential equation with respect to system energy. The establishing and solving of the associated backward Kolmogorov equation yields the reliability function and probability density of first-passage time. The effects of system parameters on first-passage failure are investigated concisely and validated through Monte Carlo simulation.  相似文献   

4.
We studied the response of fractional-order van de Pol oscillator to Gaussian white noise excitation in this letter. An equivalent integral-order nonlinear stochastic system is obtained to replace the given system based on the principle of minimum mean-square error. Through stochastic averaging, an averaged Itô equation is deduced. We obtained the Fokker-Planck-Kolmogorov equation connected to the averaged Itô equation and solved it to yield the approximate stationary response of the system. The analytical solution is confirmed by using Monte Carlo simulation.  相似文献   

5.
In this paper, we investigate nonlinear dynamical responses of two-degree-of-freedom airfoil (TDOFA) models driven by harmonic excitation under uncertain disturbance. Firstly, based on the deterministic airfoil models under the harmonic excitation, we introduce stochastic TDOFA models with the uncertain disturbance as Gaussian white noise. Subsequently, we consider the amplitude–frequency characteristic of deterministic airfoil models by the averaging method, and also the stochastic averaging method is applied to obtain the mean-square response of given stochastic TDOFA systems analytically. Then, we carry out numerical simulations to verify the effectiveness of the obtained analytic solution and the influence of harmonic force on the system response is studied. Finally, stochastic jump and bifurcation can be found through the random responses of system, and probability density function and time history diagrams can be obtained via Monte Carlo simulations directly to observe the stochastic jump and bifurcation. The results show that noise can induce the occurrence of stochastic jump and bifurcation, which will have a significant impact on the safety of aircraft.  相似文献   

6.
A new procedure for designing optimal bounded control of stochastically excited multi-degree-of-freedom (MDOF) nonlinear viscoelastic systems is proposed based on the stochastic averaging method and the stochastic maximum principle. First, the system is formulated as a quasi-integrable Hamiltonian system with viscoelastic terms and each viscoelastic term is replaced approximately by an elastically restoring force and a visco-damping force based on the randomly periodic behavior of the motion of quasi-integrable Hamiltonian system. Thus, a stochastically excited MDOF nonlinear viscoelastic system is converted to an equivalent quasi-integrable Hamiltonian system without viscoelastic terms. Then, by applying stochastic averaging, the system is further reduced to a partially averaged system of less dimension. The adjoint equation and maximum condition for the optimal control problem of the partially averaged system are derived by using the stochastic maximum principle, and the optimal bounded control force is determined from the maximum condition. Finally, the probability and statistics of the stationary response of optimally controlled system are obtained by solving the Fokker–Plank–Kolmogorov equation (FPK) associated with the fully averaged Itô equation of the controlled system. An example is worked out to illustrate the proposed procedure and its effectiveness.  相似文献   

7.
The optimal bounded control of stochastic-excited systems with Duhem hysteretic components for maximizing system reliability is investigated. The Duhem hysteretic force is transformed to energy-depending damping and stiffness by the energy dissipation balance technique. The controlled system is transformed to the equivalent nonhysteretic system. Stochastic averaging is then implemented to obtain the Itô stochastic equation associated with the total energy of the vibrating system, appropriate for evaluating system responses. Dynamical programming equations for maximizing system reliability are formulated by the dynamical programming principle. The optimal bounded control is derived from the maximization condition in the dynamical programming equation. Finally, the conditional reliability function and mean time of first-passage failure of the optimal Duhem systems are numerically solved from the Kolmogorov equations. The proposed procedure is illustrated with a representative example.  相似文献   

8.
The transient probability densities of nonlinear multi-degree-of-freedom systems with time delay are investigated. The system is firstly approximated by the corresponding non-time-delay system through appropriate relations between the current states and the delay states. Stochastic averaging is adopted to reduce the dimension of the equivalent system, and the corresponding Fokker–Planck–Kolmogorov equation with regard to transient probability density is obtained. This equation is solved by expressing the transient probability density as multiple series in terms of a set of properly state-dependent orthogonal basis functions with time-dependent coefficients. Two examples are given to illustrate the accuracy and efficacy of the proposed procedure.  相似文献   

9.
In this paper, the nonlinear random vibration of a uniform beam clamped at both of its ends is investigated by the regulated stochastic linearization technique. A closed system of nonlinear algebraic equations for linearization coefficients is obtained using the frequency–response function matrix. Root mean-square response of maximum deflection of the beam that is obtained from the present technique is subsequently compared with that furnished by the conventional linearization. The numerical results show that the regulated stochastic linearization technique constitutes an excellent alternative to the classical linearization scheme for analyzing responses of the clamped–clamped beam.  相似文献   

10.
衰减机械系统的非线性振荡可用来研究长约瑟夫逊结的电动力学方程式,而这方程式等同于弱衰减机械系统的非线性振荡。本文应用的方法是将控制方程线性化及结合谐波平衡法(线性谐波平衡法)而产生色散关系,再把平均法应用在弱非线性的耗散系统中得到非常准确的瞬变反应。在此提出的方法不仅考虑能量耗散,而且利用简单的线性代数等式关系来代替冗长及复杂的分析近似解。  相似文献   

11.
A stochastic optimal control method for nonlinear hysteretic systems under exter-nally and/or parametrically random excitations is presented and illustrated with an example ofhysteretic column system.A hysteretic system subject to random excitation is first replaced bya nonlinear non-hysteretic stochastic system.An It stochastic differential equation for the to-tal energy of the system as a one-dimensional controlled diffusion process is derived by usingthe stochastic averaging method of energy envelope.A dynamical programming equation is thenestablished based on the stochastic dynamical programming principle and solved to yield the op-timal control force.Finally,the responses of uncontrolled and controlled systems are evaluatedto determine the control efficacy.It is shown by numerical results that the proposed stochasticoptimal control method is more effective and efficient than other optimal control methods.  相似文献   

12.
响应与稳定性分析一直是随机动力学研究的热点, 发展预测随机响应及判定系统响应性态的方法具有重要的科学意义与广阔的应用前景. 本文综述了有关多自由度非线性随机系统的响应与稳定性的研究. 首先简介用于随机系统响应预测的Fokker-Planck-Kolmogorov方程法、随机平均法、等效线性化法、等效非线性系统法和Monte Carlo模拟法, 评述其优缺点, 进而讨论了多自由度非线性随机系统响应的精确平稳解、近似瞬态解的研究现状. 然后介绍了随机系统稳定性分析的两类方法, 即Lyapunov函数法及Lyapunov指数法,并综述了多自由度非线性随机系统稳定性分析的研究现状. 最后给出几点发展建议.  相似文献   

13.
First-passage failure of strongly nonlinear oscillators under combined harmonic and real noise excitations is studied. The motion equation of the system is reduced to a set of averaged Itô stochastic differential equations by stochastic averaging in the case of resonance. Then, the backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function and the conditional probability density and mean first-passage time are obtained by solving the backward Kolmogorov equation and Pontryagin equation with suitable initial and boundary conditions. The procedure is applied to Duffing–van der Pol system in resonant case and the analytical results are verified by Monte Carlo simulation.  相似文献   

14.
15.
A NEW STOCHASTIC OPTIMAL CONTROL STRATEGY FOR HYSTERETIC MR DAMPERS   总被引:3,自引:0,他引:3  
I. INTRODUCTION Magneto-rheological (MR) ?uid as a smart material possesses fairly good essential characteristics suchas reversible change between liquid and semi-solid in milliseconds with a controllable yield strengthwhen exposed to a magnetic ?eld. A…  相似文献   

16.
The probability density function for transient response of non-linear stochastic system is investigated through the stochastic averaging and Mellin transform. The stochastic averaging based on the generalized harmonic functions is adopted to reduce the system dimension and derive the one-dimensional Itô stochastic differential equation with respect to amplitude response. To solve the Fokker–Plank–Kolmogorov equation governing the amplitude response probability density, the Mellin transform is first implemented to obtain the differential relation of complex fractional moments. Combining the expansion form of transient probability density with respect to complex fractional moments and the differential relations at different transform parameters yields a set of closed-form first-order ordinary differential equations. The complex fractional moments which are determined by the solution of the above equations can be used to directly construct the probability density function of system response. Numerical results for a van der Pol oscillator subject to stochastically external and parametric excitations are given to illustrate the application, the convergence and the precision of the proposed procedure.  相似文献   

17.
In this paper, the stochastic bifurcations and the performance analysis of a strongly nonlinear tri-stable energy harvesting system with colored noise are investigated. Using the stochastic averaging method, the averaged Fokker–Plank–Kolmogorov equation and the stationary probability density (SPD) of the amplitude are obtained, respectively. Meanwhile, the Monte Carlo simulations are performed to verify the effectiveness of the theoretical results. D-bifurcation is studied through the largest Lyapunov exponent calculations, which implies the system undergoes D-bifurcation twice with increasing the nonlinear stiffness coefficients. The effects of the nonlinear stiffness coefficients, noise intensity and correlation time on P-bifurcation are discussed by the qualitative changes of the SPD. Moreover, the relationship between D- and P-bifurcation is explored. If the strength of stochastic jump has obvious gap with respect to the two statuses before and after the occurrence of P-bifurcation, the D-bifurcation will happen, too. Finally, the performance and the capability of harvesting energy from ambient random excitation are analyzed.  相似文献   

18.
A nonlinear stochastic optimal control strategy for minimizing the first-passage failure of quasi integrable Hamiltonian systems (multi-degree-of-freedom integrable Hamiltonian systems subject to light dampings and weakly random excitations) is proposed. The equations of motion for a controlled quasi integrable Hamiltonian system are reduced to a set of averaged Itô stochastic differential equations by using the stochastic averaging method. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximization of reliability and mean first-passage time are formulated. The optimal control law is derived from the dynamical programming equations and the control constraints. The final dynamical programming equations for these control problems are determined and their relationships to the backward Kolmogorov equation governing the conditional reliability function and the Pontryagin equation governing the mean first-passage time are separately established. The conditional reliability function and the mean first-passage time of the controlled system are obtained by solving the final dynamical programming equations or their equivalent Kolmogorov and Pontryagin equations. An example is presented to illustrate the application and effectiveness of the proposed control strategy.  相似文献   

19.
A time-delayed stochastic optimal bounded control strategy for strongly non-linear systems under wide-band random excitations with actuator saturation is proposed based on the stochastic averaging method and the stochastic maximum principle. First, the partially averaged Itô equation for the system amplitude is derived by using the stochastic averaging method for strongly non-linear systems. The time-delayed feedback control force is approximated by a control force without time delay based on the periodically random behavior of the displacement and velocity of the system. The partially averaged Itô equation for the system energy is derived from that for the system amplitude by using Itô formula and the relation between system amplitude and system energy. Then, the adjoint equation and maximum condition of the partially averaged control problem are derived based on the stochastic maximum principle. The saturated optimal control force is determined from maximum condition and solving the forward–backward stochastic differential equations (FBSDEs). For infinite time-interval ergodic control, the adjoint variable is stationary process and the FBSDE is reduced to a ordinary differential equation. Finally, the stationary probability density of the Hamiltonian and other response statistics of optimally controlled system are obtained from solving the Fokker–Plank–Kolmogorov (FPK) equation associated with the fully averaged Itô equation of the controlled system. For comparison, the optimal control forces obtained from the time-delayed bang–bang control and the control without considering time delay are also presented. An example is worked out to illustrate the proposed procedure and its advantages.  相似文献   

20.
In this paper, the first-passage failure of stochastic dynamical systems with fractional derivative and power-form restoring force subjected to Gaussian white-noise excitation is investigated. With application of the stochastic averaging method of quasi-Hamiltonian system, the system energy process will converge weakly to an Itô differential equation. After that, Backward Kolmogorov (BK) equation associated with conditional reliability function and Generalized Pontryagin (GP) equation associated with statistical moments of first-passage time are constructed and solved. Particularly, the influence on reliability caused by the order of fractional derivative and the power of restoring force are also examined, respectively. Numerical results show that reliability function is decreased with respect to the time. Lower power of restoring force may lead the system to more unstable evolution and lead first passage easy to happen. Besides, more viscous material described by fractional derivative may have higher reliability. Moreover, the analytical results are all in good agreement with Monte-Carlo data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号