首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers the stability and eigenvalue analyses for a bladed rotor which goes under cylindrical and conical whirling. The model consists of a group of flexible blades which are modeled by beams and rigid disk on the elastic bearings. The model is a Hamiltonian system which is perturbed by small dissipative forces. Krein’s theorem reveals that the forward whirling mode and the blade collective motion may cause instability when their frequencies cut themselves in the Campbell diagram. An unstable interaction between the blades and the conical whirling is discovered. The eigenmode and eigenvalue evolutions are determined on the stability boundary. The bifurcation analysis is performed by applying multiple scales method around the stability boundary. It is shown that the damping distribution between the blades and the bearings may shift the unstable mode.  相似文献   

2.
An aero-engine rotor system is simplified as an unsymmetrical-rigid-rotor with nonlinear-elastic-support based on its characteristics. Governing equations of the rubbing system, obtained from the Lagrange equation, are solved by the averaging method to find the bifurcation equations. Then, according to the two-dimensional constraint bifurcation theory, transition sets and bifurcation diagrams of the system with and without rubbing are given to study the influence of system eccentricity and damping on the bifurcation behaviors, respectively. Finally, according to the Lyapunov stability theory, the stability region of the steady-state rubbing solution, the boundary of static bifurcation, and the Hopf bifurcation are determined to discuss the influence of system parameters on the evolution of system motion. The results may provide some references for the designer in aero rotor systems.  相似文献   

3.
IntroductionSincetheendof 1 980s,asahighandnewtechnologyforactivevibrationcontrol,activemagneticbearings (AMBs)havebeenappliedinhighperformancecentrifugalcompressorsandpumpsinvolvedinlargetypepowerstations,jet_planes,spacecraftsandpetroleumoilpipingsystems,…  相似文献   

4.
A general model of a rub-impact rotor system is set up and supported by oil film journal bearings. The Jacobian matrix of the system response is used to calculate the Floquet multipliers, and the stability of periodic response is determined via the Floquet theory. The nonlinear dynamic characteristics of the system are investigated when the rotating speed and damping ratio is used as control parameter. The analysis methods are inclusive of bifurcation diagrams, Poincaré maps, phase plane portraits, power spectrums, and vibration responses of the rotor center and bearing center. The analysis reveals a complex dynamic behavior comprising periodic, multi-periodic, chaotic, and quasi-periodic response. The modeling results thus obtained by using the proposed method will contribute to understanding and controlling of the nonlinear dynamic behaviors of the rotor-bearing system.  相似文献   

5.
研究了4自由度不平衡弹性转子在非线性油膜力、非线性内阻力和非线性弹性力联合作用下的动力学特性。结果表明,当只有非线性油膜力作用时,转子只存在由于油膜失稳而导致的倍周期分岔。而当非线性油膜力与非线性内阻力共同作用时,在油膜失稳后,转子产生低频振动。转速继续增加,还会诱发内阻失稳,产生概周期运动。在倍周期分岔中,存在分岔激变现象。本文发现的由于油膜涡动而导致的内阻失稳(概周期运动)是一种未见报道的转子失稳模式(组合失稳),它与油膜失稳(倍周期运动)一起可作为转子故障诊断的典型失稳模式。  相似文献   

6.
This work reports a numerical study undertaken to investigate the dynamic response of a rotor supported by two turbulent flow model journal bearings with nonlinear suspension and lubricated with couple stress fluid under quadratic damping. This may be the first time that analysis of rotor-bearing system considered the quadratic damping effect. The dynamic response of the rotor center and bearing center are studied. The analysis methods employed in this study are inclusive of the dynamic trajectories of the rotor center and bearing center, power spectra, Poincaré maps and bifurcation diagrams. The maximum Lyapunov exponent analysis is also used to identify the onset of chaotic motion. The modeling results provide some useful insights into the design and development of rotor-bearing system for rotating machinery that operates at highly rotational speed and highly nonlinear regimes.  相似文献   

7.
具有非轴对称刚度转轴的分岔   总被引:8,自引:0,他引:8  
肖锡武  徐鉴  李誉  杨叔子 《力学学报》2000,32(3):360-366
研究具有非轴对称刚度转轴的1/2亚谐共振和分岔,首先用Hamilton原理导出运动微分方程,这是刚度系数周期性变化的参数激励方程,然后用多尺度法求得平均方程分岔响应方程和定常解,最后用奇异性理论分析分岔响应方程和定常解的稳定性,得到了局部分岔集和不同区域的不同分岔响应曲线。  相似文献   

8.
碰摩裂纹转子轴承系统的周期运动稳定性及实验研究   总被引:1,自引:0,他引:1  
根据碰摩裂纹耦合故障转子轴承系统的非线性动力学方程,利用求解非线性非自治系统周期解的延拓打靶法,研究了系统周期运动的稳定性。研究发现,小偏心量下系统周期运动发生Hopf分岔,大偏心量下系统周期运动发生倍周期分岔,偏心量的加大使周期解的稳定性明显降低;系统碰摩间隙变小,碰摩影响了油膜涡动的形成,使失稳转速有所提高;裂纹深度的加大降低了系统周期运动的稳定性。本文的研究为转子轴承系统的安全稳定运行提供了理论参考。  相似文献   

9.
为了探究轮对系统的横向失稳问题,考虑了陀螺效应和一系悬挂阻尼的影响作用,建立非线性轮轨接触关系的轮对动力学模型,研究轮对系统的蛇行稳定性、Hopf分岔特性及迁移转化机理.通过稳定性判据获得了轮对系统失稳临界速度.采用中心流形定理和规范型方法对轮对动力学模型进行化简,得到与轮对系统分岔特性相同的一维复变量方程,理论推导求得轮对系统的第一Lyapunov系数的表达式,根据其符号即可判断轮对系统的Hopf分岔类型.讨论了不同参数对轮对系统Hopf分岔临界速度的影响,探究了轮对系统的超临界、亚临界Hopf分岔域在二维参数空间的分布规律.利用数值模拟得到轮对系统的3种典型Hopf分岔图,验证了轮对系统超临界、亚临界Hopf分岔域分布规律的正确性.结果表明,轮对系统的临界速度随着等效锥度的增大而减小,随着一系悬挂的纵向刚度和纵向阻尼的增大而增大,随着纵向蠕滑系数的增大呈先增大后减小.系统参数变化会引起轮对系统Hopf分岔类型发生改变,即亚临界与超临界Hopf分岔相互迁移转化.轮对系统Hopf分岔域在二维参数空间的分布规律对于轮对系统参数匹配和优化设计具有一定的指导意义.  相似文献   

10.
Nonlinear damping suspension is a promising method to be used in a rotor-bearing system for vibration isolation between the bearing and environment. However, the nonlinearity of the suspension may influence the stability of the rotor-bearing system. In this paper, the motions of a flexible rotor in short journal bearings with nonlinear damping suspension are studied. A computational method is used to solve the equations of motion, and the bifurcation diagrams, orbits, Poincaré maps, and amplitude spectra are used to display the motions. The results show that the effect of the nonlinear damping suspension on the motions of the rotor-bearing system depends on the speed of rotor: (a) For low speeds, the rotor- bearing system presents the same motion pattern under the nonlinear damping ( \(p=0.5, 2, 3\) ) suspension as for the linear damping ( \(p=1\) ) suspension; (b) For high speeds, the effect of nonlinear damping depends on a combination of the damping exponent and damping coefficient. The square root damping model ( \(p=0.5\) ) shows a wider stable speed range than the linear damping for large damping coefficients. The quadratic damping ( \(p=2\) ) shows similar results to linear damping with some special damping coefficients. The cubic damping ( \(p=3\) ) shows more stable response than the linear damping in general.  相似文献   

11.
迷宫密封转子系统非线性动力稳定性的研究   总被引:12,自引:0,他引:12  
研究迷宫密封对转子系统动力稳定性的影响,迷宫密封的气动力采用Muszynska非线性力模型,计算了单盘Jeffcott转子非线性动力学特性。对Jacobi矩阵的分析表明,在密封力的影响下,转子达到一定转速后开始失稳,发生Hopf分岔,进入周期涡动状态,涡动幅度随转速的提高而增大,提高到一定程度,密封和转子发生碰摩,采用Runge-Kutta法数值模拟了转子的轴心轨迹。最后分析了迷宫密封的物理和结构参数对系统运动特性的影响。  相似文献   

12.
Stability and dynamic characteristics of a ball bearing-rotor system are investigated under the effect of the clearance in the ball bearing. Different clearance values are assumed to calculate the nonlinear stability of periodic solution with the aid of the Floquet theory. Bifurcation and chaos behavior are analyzed with variation of the clearance and rotational speed. It is found that there are three routes to unstable periodic solution. The period-doubling bifurcation and the secondary Hopf bifurcation are two usual routes to instability. The third route is the boundary crisis, a chaotic attractor occurs suddenly as the speed passes through its critical value. At last, the instable ranges for different internal clearance values are described. It is useful to investigate the stability property of ball bearing rotor system.  相似文献   

13.
非线性系统周期强迫不平衡响应的稳定性分析   总被引:4,自引:0,他引:4  
夏南  孟光 《力学学报》2001,33(1):128-133
多自由度强非线性系统是工程实际中经常遇见的一类模型,利用非线性动力学分析中的打靶法求解该类系统的周期解,并对Flopuet主导特征值判断周期解的失稳方式,利用该方法对旋转机械中的一个具体模型;双盘县臂柔性转子-非同心型挤压油膜阻尼器(SFD)系统周期强迫不平衡响应的稳定性和分岔行为进行了分析,分析表明,在该系统中存在着第二Hopf分岔、倍周期分岔、鞍-结分岔三种分岔形式。  相似文献   

14.
This research studies the effects of axial preload on nonlinear dynamic characteristics of a flexible rotor supported by angular contact ball bearings. A dynamic model of ball bearings is improved for modeling a five-degree-of-freedom rotor bearing system. The predicted results are in good agreement with prior experimental data, thus validating the proposed model. With or without considering unbalanced forces, the Floquet theory is employed to investigate the bifurcation and stability of system periodic solution. With the aid of Poincarè maps and frequency response, the unstable motion of system is analyzed in detail. Results show that the effects of axial preload applied to ball bearings on system dynamic characteristics are significant. The unstable periodic solution of a balanced rotor bearing system can be avoided when the applied axial preload is sufficient. The bifurcation margins of an unbalanced rotor bearing system enhance markedly as the axial preload increases and relates to system resonance speed.  相似文献   

15.
Cracks appearing in the shaft of a rotary system are one of the main causes of accidents for large rotary machine systems. This research focuses on investigating the bifurcation and chaotic behavior of a rotating system with considerations of various crack depth and rotating speed of the system’s shaft. An equivalent linear-spring model is utilized to describe the cracks on the shaft. The breathing of the cracks due to the rotation of the shaft is represented with a series truncated time-varying cosine series. The geometric nonlinearity of the shaft, the masses of the shaft and a disc mounted on the shaft, and the viscoelasticity of the supports are taken into account in modeling the nonlinear dynamic rotor system. Numerical simulations are performed to study the bifurcation and chaos of the system. Effects of the shaft’s rotational speed, various crack depths and viscosity coefficients on the nonlinear dynamic properties of the system are investigated in detail. The system shows the existence of rich bifurcation and chaos characteristics with various system parameters. The results of this research may provide guidance for rotary machine design, machining on rotary machines, and monitoring or diagnosing of rotor system cracks.  相似文献   

16.
Nonlinear dynamic behaviors of a rotor-labyrinth seal system   总被引:2,自引:0,他引:2  
The nonlinear model of rotor-labyrinth seal system is established using Muszynska’s nonlinear seal forces. We deal with dynamic behaviors of the unbalanced rotor-seal system with sliding bearing based on the adopted model and Newmark integration method. The influence of the labyrinth seal one the nonlinear characteristics of the rotor system is analyzed by the bifurcation diagrams and Poincare’ maps. Various phenomena in the rotor-seal system, such as periodic motion, double-periodic motion, quasi-periodic motion and Hopf bifurcation are investigated and the stability is judged by Floquet theory and bifurcation theorem. The influence of parameters on the critical instability speed of the rotor-seal system is also included.  相似文献   

17.
In this paper, the effect of a cubic structural restoring force on the flutter characteristics of a two-dimensional airfoil placed in an incompressible flow is investigated. The aeroelastic equations of motion are written as a system of eight first-order ordinary differential equations. Given the initial values of plunge and pitch displacements and their velocities, the system of equations is integrated numerically using a fourth order Runge-Kutta scheme. Results for soft and hard springs are presented for a pitch degree-of-freedom nonlinearity. The study shows the dependence of the divergence flutter boundary on initial conditions for a soft spring. For a hard spring, the nonlinear flutter boundary is independent of initial conditions for the spring constants considered. The flutter speed is identical to that for a linear spring. Divergent flutter is not encountered, but instead limit-cycle oscillation occurs for velocities greater than the flutter speed. The behaviour of the airfoil is also analysed using analytical techniques developed for nonlinear dynamical systems. The Hopf bifurcation point is determined analytically and the amplitude of the limit-cycle oscillation in post-Hopf bifurcation for a hard spring is predicted using an asymptotic theory. The frequency of the limit-cycle oscillation is estimated from an approximate method. Comparisons with numerical simulations are carried out and the accuracy of the approximate method is discussed. The analysis can readily be extended to study limit-cycle oscillation of airfoils with nonlinear polynomial spring forces in both plunge and pitch degrees of freedom.  相似文献   

18.
研究弹性支承滑动轴承不平衡转子系统的稳定性及分岔特性。建立了弹性支承-滑动轴承-转子非线性动力系统的力学模型,在油膜力非线性的情况下,应用数值模拟,采用打靶法计算了刚性转子系统的周期解,并与龙格-库塔法计算的结果进行了对比,依据Floquet理论,分析了周期解的稳定性,再结合龙格-库塔法、Poineare映射法作出了系统运动分岔图。最后,讨论了轴的柔性对转子系统运动稳定性的影响。  相似文献   

19.
本文讨论了具有内外阻尼的高速充液转子的动力稳定性。首先通过对旋转流体的平面流场的求解,导出充液转子作简谐运动时流体对转子的动压力,由此导出转子的运动方程;讨论了充液转子的动力稳定性,给出了稳定性解析判据和稳定性边界。结果表明,存在转速门槛值,低于该转速时,充液转子可存在稳定区;当高于该转速时,系统永远失稳,这一结论复盖了已有文献的结果。  相似文献   

20.
A reduced model is proposed and analyzed for the simulation of vortex-induced vibrations (VIVs) for turbine blades. A rotating blade is modelled as a uniform cantilever beam, while a van der Pol oscillator is used to represent the time-varying characteristics of the vortex shedding, which interacts with the equations of motion for the blade to simulate the fluid-structure interaction. The action for the structural motion on the fluid is considered as a linear inertia coupling. The nonlinear characteristics for the dynamic responses are investigated with the multiple scale method, and the modulation equations are derived. The transition set consisting of the bifurcation set and the hysteresis set is constructed by the singularity theory and the effects of the system parameters, such as the van der Pol damping. The coupling parameter on the equilibrium solutions is analyzed. The frequency-response curves are obtained, and the stabilities are determined by the Routh-Hurwitz criterion. The phenomena including the saddle-node and Hopf bifurcations are found to occur under certain parameter values. A direct numerical method is used to analyze the dynamic characteristics for the original system and verify the validity of the multiple scale method. The results indicate that the new coupled model is useful in explaining the rich dynamic response characteristics such as possible bifurcation phenomena in the VIVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号