首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electroreduction of Tc(VII) was studied in nitric acid solution using glassy carbon electrode. The electroreduction was conducted at a constant potential –300 mV (vs. Ag/AgCl) with a potentiostat. It was found that the difference of the Tc concentration in the solutions before and after the electrolysis was negligibly small. This means that there were almost no TcO2 or Tc deposited on the carbon fiber electrode during the electroreduction. Absorption spectra and distribution coefficients obtained by ion-exchange analysis indicated that Tc(VII) was reduced to Tc(IV).This work was financed by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) under the framework of The Development of Innovative Nuclear Technologies.  相似文献   

2.
Technetium(VII) and Tc(IV) are concentrated from 3 M hydrochloric acid media by complexing with tri-n-octylphosphine oxide applied as a thin layer to a glassy carbon electrode. Differential-pulse cathodic stripping voltammetry from 0 V provides a stripping peak for Tc(VII) at ?350 mV (vs. Ag/AgCl). The detection limit after an enrichment time of 10 min is about 1.8×10?8 M Tc(VII). Technetium(IV) produces a stripping peak near the Tc(VII) peak which can be used for rough estimates of the Tc(VII)/Tc(IV) ratio within limited ranges. Uranium(VI) in equimolar concentrations interferes.  相似文献   

3.
It was found that thiourea, N-methylthiourea, N,N′-dimethylthiourea and N-allylthiourea accelerate the electroreduction process of In(III) ions in chlorates(VII). These substances are adsorbed on mercury from chlorates(VII). The relative surface excesses of thiourea and its derivatives increase with the increase of their concentrations and electrode charge. After adding thiourea, N-methylthiourea, N,N′-dimethylthiourea and N-allylthiourea to the solution an acceleration of the electroreduction process of In(III) ions occurs. This process depends on two factors: the adsorption of an accelerating substance on mercury and on the formation of complexes between a depolarizer and an accelerating substance on the electrode surface. The equilibrium of this complexing reaction determines the magnitude of the catalytic effect.  相似文献   

4.
The extraction of Tc(VII) by the mixture of tri-n-butyl phosphate (TBP) and 2-nitrophenyl octyl ether (NPOE) has been studied. 0.2M NPOE-TBP can extract Tc(VII) effectively from 1M HNO3 and 1M NaOH solutions with distribution ratios of 57.1 and 12.3, respectively. The distribution ratio of Tc(VII) decreases with increasing (>0.5M) HNO3 concentration but increases with the increase of NaOH concentration. A pH 9 NaOH solution has proven to be suitable for Tc(VII) stripping. A simple extraction-stripping cycle can remove Tc(VII) from a sodium hydroxide solution. A more sophisticated extraction process is proposed to remove Tc(VII) from nitric acid solution because the co-extracted HNO3 prevents the direct stripping of Tc(VII) by NaOH solution of pH 9.  相似文献   

5.
meso‐Substituted cobalt porphyrins adsorbed on carbon black were prepared as catalysts for the electroreduction of O2. The catalyst, which was prepared by using a homogenizer in mixing cobalt tetraethylporphyrin and carbon black, gave rise to electroreduction of O2 at a remarkably positive potential (Ep = 0.45 V versus saturated calomel electrode (SCE)) and showed a high selectively for the four‐electron reduction (n = 3.8). Electrochemical study and extended X‐ray absorption fine structure (EXAFS) analysis revealed that the adsorbed face‐to‐face dimeric aggregates of cobalt porphyrin molecules were highly efficient catalysts for electroreduction of O2. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The separation of Tc(VII) from Mo(VI) by thin-layer and paper-chromatography is discussed. Some aspects concerning the formation and identification of lower oxidation states of Tc(VII) are also mentioned. Finally, a spot test is recommended for the determination of Mo(VI) and Al, which can be contaminants in the Tc(VII) solution eluted from the99Mo column, filled with Al2O3.  相似文献   

7.
The large-scale deployment of CO2 electroreduction is hampered by deficient carbon utilization in neutral and alkaline electrolytes due to CO2 loss into (bi)carbonates. Switching to acidic media mitigates carbonation, but suffers from low product selectivity because of hydrogen evolution. Here we report a crown ether decoration strategy on a Cu catalyst to enhance carbon utilization and selectivity of CO2 methanation under acidic conditions. Macrocyclic 18-Crown-6 is found to enrich potassium cations near the Cu electrode surface, simultaneously enhancing the interfacial electric field to stabilize the *CO intermediate and accelerate water dissociation to boost *CO protonation. Remarkably, the mixture of 18-Crown-6 and Cu nanoparticles affords a CH4 Faradaic efficiency of 51.2 % and a single pass carbon efficiency of 43.0 % toward CO2 electroreduction in electrolyte with pH=2. This study provides a facile strategy to promote CH4 selectivity and carbon utilization by modifying Cu catalysts with supramolecules.  相似文献   

8.
A challenge to the incorporation of 99Tc into a glass matrix is that 99Tc is volatile at vitrification temperatures. Understanding how this volatilization occurs requires knowledge of the multiple chemistries which Tc may take during vitrification. This paper presents an overview of how the localized chemistry of 99Tc has been determined in a series of 99Tc-bearing glasses by chemometric analyses of X-ray absorption near edge spectra (XANES). Linear combination fitting and principal component analysis of the glasses’ XANES spectra suggested that the glasses contained 3–4 chemically distinct Tc environments. The identity of the detected chemistries were pertechnetates, (Tc(VII) as isolated oxyanions, or locally coordinated by Na or K), or isolated Tc(IV) species. The linear combination fitting distribution of local Tc sites agrees with reanalyzed Raman spectra, suggesting that as targeted KTcO4 incorporation increases, a significant ion exchange takes place, and speciation in the glass changes to favor Tc(VII) formation, specifically NaTcO4. Based on the statistical suggestion that not all Tc environments are accounted by the available standards, a new mechanism for the behavior of Tc during vitrification is proposed.  相似文献   

9.
The extraction of technetium species at oxidation state lower than +7 has been examined in sulfuric and sulfuric/nitric acid solutions using UV–Vis spectroscopy and optically transparent thin layer cell (RVC-OTTLE). Soluble Tc(III), TcO2+ and [Tc2O2]3+ species with absorption bands at 420–450, 400, and 502 nm, respectively, were detected as products of pertechnetates electroreduction. The distribution ratios of 99Tc with lower than +VII oxidation state ionic species between 4 M H2SO4 and 30 % TBP/kerosene were found and are significantly lower than for TcO4 ? in the same solution.  相似文献   

10.
We present the results of electrochemical and structural investigations of several carbon materials: carbon blacks AD 100 and XC 72, ultradisperse diamond (UDD), multiwalled nanotubes (MWNT), various types of filament-like carbon materials (CFC series), and similar carbon materials promoted with cobalt tetra(para-methoxyphenyl) porphyrin (CoTMPhP) pyropolymer (PP). The electrochemical studies were performed at room temperature in 0.5 M H2SO4 by using a rotating disk electrode (RDE), a rotating ring-disk electrode (RRDE) (a thin layer of test material was applied onto the disk electrode), and a floating electrode. Structural characterization of initial and promoted carbon materials involved the determination of specific surface area by the BET method and by the polarization capacitance from cyclic voltammograms, and the particle morphology and dimensions by the transmission electron microscopy (TEM) method. The study of kinetics and mechanism of oxygen electroreduction on carbon materials promoted with CoTMPhP PP showed that the catalysts based on carbon materials of CFC and UDD series possess high specific activity in this reaction and high selectivity with respect to oxygen reduction to water. These catalysts are superior to the catalysts, in which carbon blacks AD 100 and XC 72 are used as the supports, in the specific activity.  相似文献   

11.
Adsorptivity of polyvinylpolypyrrolidone (PVPP), a candidate resin with selectivity to U(VI) in HNO3 media, to various metal ions was examined. It was found that PVPP has a strong adsorptivity to U(VI) in wide concentration range of HNO3. The Scatchard plot analysis revealed that the adsorption of U(VI) by PVPP occurs at plural binding sites. The infrared spectroscopic analysis suggested that the strong binding site is due to the coordination of the carbonyl oxygen atom and the nitrogen atom in the pyrrolidone ring to UO2 2+. It was also found that fission product ions except Re(VII) as the simulant of Tc(VII) and Pd(II) are not adsorbed onto PVPP. The adsorptivities to Tc(VII) and Pd(II) species are weak, indicating that U(VI) can be separated from other metal ions by PVPP.  相似文献   

12.
Reductive immobilization of radioactive pertechnetate (99TcO4?) in simulated groundwater was studied by prepared carboxymethyl cellulose (CMC) and starch stabilized zero valent iron nanoparticles (nZVI), and long-term remobilization of reduced Tc was also evaluated under anoxic and oxic conditions. The stabilized nZVI can effectively reduce soluble 99Tc(VII) to insoluble 99Tc(IV), and they can be easily delivered into a contaminated groundwater zone and facilitate in situ remediation. In this study, CMC-stabilized nZVI showed higher reactivity than that using starch as the stabilizer. Batch experiments indicated that more than 99% of 99Tc(VII) (C0 = 12 mg/mL) was reduced and removed from groundwater by CMC-stabilized nZVI with a CMC content of 0.2% (w/w) at a broad pH of 5–8. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses further confirmed that 99Tc(VII)O4? transformed into 99Tc(IV)O2 (s). The presence of bicarbonate exhibited insignificant effect on Tc immobilization, while humic acid (HA) inhibited reaction mainly due to retardation on electron transfer and formation of Tc(IV)-HA complexes. More interesting, the immobilized Tc(IV) remained insoluble even after 120 d under anoxic condition, while only ~21% was remobilized when exposed to air. Therefore, bio-macromolecules stabilized nZVI nanoparticles could be a viable alternative for in situ remediation of radioactive contamination in groundwater.  相似文献   

13.
The present research aimed at investigating the electrocatalytic properties and the electrochemical deposition of Pt nanoparticles on carbon powder, carbon nanotube and preparation of carbon and single wall carbon nanotube supported platinum electrodes. The Pt nanoparticles were synthesized by electroreduction of hexachloroplatinic acid in aqueous solution at ?200 mV. Electrocatalytic properties of the modified electrodes for oxygen reduction were investigated by cyclic voltammetry in O2 saturated solution containing 0.1 M HClO4. Methanol electrooxidation at the modified surfaces in 0.5 M HCLO4 was studied by cyclic voltammetry. The corresponding results showed that the Pt/SWCNT/GC electrode exhibits more improved catalytical activity than the Pt/C/GC electrode.  相似文献   

14.
The electrocatalytic behaviour of cobalt(III) tetrakis(4-trimethylammoniumphenyl)porphyrin (CoTMAP) and the electroreduction mechanisms of dioxygen and dithiodipropionic acid (PSSP) at glassy carbon electrodes (GCEs) modified with Nafion coatings incorporating CoTMAP and Ru(NH3)63+ have been studied. The experimental results indicate that the catalytic electroreduction of dioxygen using CoTMAP as a catalyst and Ru(NH 3)63+ as a mediator could proceed at the Nafion coating—solution interface regardless of the state of the electrode surface. The catalytic electroreduction of dithiodipropionic acid could not proceed at the Nafion coating—solution interface but only at the GCE—solution interface, suggesting the importance of the adsorption of Co(I)TMAP on the GCE to the catalytic electroreduction of PSSP.  相似文献   

15.
Using the rotating ring (platinum)—disk (glassy carbon) electrode methodology, electrocatalytic activity of the microstructured copper centers (imbedded within the polyvinylpyrrolidone polymer matrix and deposited onto the glassy carbon disk electrode) has been monitored during electroreduction of carbon dioxide both in acid (HClO4) and neutral (KHCO3) media as well as diagnosed (at Pt ring) with respect to formation of the electroactive products. Combination of the stripping-type and rotating ring-disk voltammetric approaches has led to the observation that, regardless the overlapping reduction phenomena, the reduction of carbon dioxide at copper catalyst is, indeed, operative and coexists with hydrogen evolution reaction. Using the fundamental concepts of surface electrochemistry and analytical voltammetry, the reaction products (thrown onto the platinum ring electrode) could be considered and identified as adsorbates (on Pt) under conditions of the stripping-type oxidation experiment. Judging from the potentials at which the stripping voltammetric peaks appear in neutral CO2-saturated KHCO3 (pH 6.8), formic acid or carbon monoxide seem to be the most likely reaction products or intermediates. The proposed methodology also permits correlation between the CO2 electroreduction products and the potentials applied to the disk electrode. By performing the comparative stripping-type voltammetric experiments in acid medium (HClO4 at pH 1) with the adsorbates of formic acid, ethanol and acetaldehyde (on Pt ring), it can be rationalized that, although C2H5OH or CH3CHO are very likely CO2-reduction electroactive products, formation of some HCOOH, CH3OH or even CO cannot be excluded.  相似文献   

16.
Micro- and mesoporous carbide-derived carbons synthesized from molybdenum and tungsten carbides were used as porous supports for a platinum catalyst. Synthesized materials were compared with commercial Vulcan XC72R conducting furnace black. The scanning electron microscopy, X-ray diffraction, Raman spectroscopy, high-resolution transmission electron microscopy, and low-temperature N2 adsorption methods were applied to characterize the structure of catalysts prepared. The kinetics of oxygen electroreduction in 0.5 M H2SO4 solution was studied using cyclic voltammetry and rotating disk electrode methods. The synthesized carbide-derived carbons exhibited high specific surface area and narrow pore size distribution. The platinum catalyst was deposited onto the surface of a carbon support in the form of nanoparticles or agglomerates of nanoparticles. Comparison of carbide-derived carbons and Vulcan XC72R as a support showed that the catalysts prepared using carbide-derived carbons are more active towards oxygen electroreduction. It was shown that the structure of the carbon support has a great influence on the activity of the catalyst towards oxygen electroreduction.  相似文献   

17.
The results of the kinetic measurements of Bi(III) electroreduction on a mercury electrode in 1–8 mol dm?3 chlorate (VII) solutions and in the presence of cystine demonstrate a dependence of the process on the temperature. The applied electrochemical techniques (DC polarography, cyclic and SWV voltammetry) allowed for the determination of the kinetic and thermodynamic parameters and their correlation with water activity. The catalytic activity of cystine was confirmed by the decrease in overall enthalpies of activation. The changes in the values of ΔH and ΔS 0 for Bi(III) electroreduction in the presence of cystine with the increase of chlorate (VII) concentration showed that the mechanism is different in solutions with low water activity as compared to those with high water activity. Probably it is connected with a different structure of the activated complexes (Bi-Hg(SR)2), mediating electron transfer.   相似文献   

18.
An electrochemical sensor for metronidazole (MTZ) was built via the surface modification of a carbon paste electrode (CPE) by a film obtained through electropolymerization of α‐cyclodextrin (CPEα‐CD). The CPEα‐CD was characterized by cyclic voltammetry (CV) and atomic force microscopy (AFM), by both techniques was demonstrated that the polymer film is coating the electrode surface. The electroreduction behaviour of MTZ in HClO4 media as a supporting electrolyte was studied by differential‐pulse voltammetric (DPV) technique. The DPV electrochemical process was observed to be diffusion controlled and irreversible. Under optimal conditions, the peak current was proportional to MTZ concentration in the range of 0.5 to 103.0 μM with a detection limit of 0.28±0.02 μM. The method was successfully applied to quantify of MTZ in pharmaceutical formulations. In addition, this proposed MTZ sensor exhibited good reproducibility, long‐term stability and fast current response.  相似文献   

19.
This article describes an electrochemical strategy to achieve low background‐current levels in horse‐radish peroxidase (HRP)‐based electrochemical immunosensors. The strategy consists of (i) the use of an HRP substrate/product redox couple whose formal potential is high and (ii) the use of an electrode that shows moderate electrocatalytic activity for the redox couple. The strategy is proved by a model biosensor using a catechol/o‐benzoquinone redox couple and an indium tin oxide (ITO) electrode. The combined effect of high formal potential and moderate electrocatalytic activity allows o‐benzoquinone electroreduction with minimal catechol electrooxidation and H2O2 electroreduction. The detection limit for mouse‐IgG is 100 pg/mL.  相似文献   

20.
Electroreduction of C60 dissolved in hydrophobic solvent deposited on the electrode surface was studied. A microliter amount of C60 and tetrahexylammonium perchlorate solution in 1,2-dichlorobenzene was deposited on basal plane pyrolytic graphite electrode and this electrode was immersed into an aqueous solution. The voltammetry shows three consecutive reduction–oxidation steps. The redox potential of first electroreduction step is sensitive on anion but not on cation present in the aqueous phase. This parameter also depends on electrolyte concentration in the aqueous and organic phase. It is proposed that electroreduction of C60 is preceded by anion exchange and followed by anion expulsion to the aqueous phase. Similar anion effect on the redox potential is also observed for unsupported deposit indicating importance of initial partitioning of electrolyte into the organic phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号