首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We establish the existence of invariant stable manifolds for C 1 perturbations of a nonuniform exponential dichotomy with an arbitrary nonuniform part. We consider the general case of sequences of maps, which corresponds to a nonautonomous dynamics with discrete time. We also obtain optimal estimates for the decay of trajectories along the stable manifolds. The optimal C 1 smoothness of the invariant manifolds is obtained using an invariant family of cones.  相似文献   

2.
We study the stability under perturbations for delay difference equations in Banach spaces. Namely, we establish the (nonuniform) stability of linear nonuniform exponential contractions under sufficiently small perturbations. We also obtain a stable manifold theorem for perturbations of linear delay difference equations admitting a nonuniform exponential dichotomy, and show that the stable manifolds are Lipschitz in the perturbation.  相似文献   

3.
We give conditions for the robustness of nonuniform exponential dichotomies in Banach spaces, in the sense that the existence of an exponential dichotomy for a given linear equation x=A(t)x persists under a sufficiently small linear perturbation. We also establish the continuous dependence with the perturbation of the constants in the notion of dichotomy and of the “angles” between the stable and unstable subspaces. Our proofs exhibit (implicitly) the exponential dichotomies of the perturbed equations in terms of fixed points of appropriate contractions. We emphasize that we do not need the notion of admissibility (of bounded nonlinear perturbations). We also obtain related robustness results in the case of nonuniform exponential contractions. In addition, we establish an appropriate version of robustness for nonautonomous dynamical systems with discrete time.  相似文献   

4.
For nonautonomous linear equations x=A(t)x, we show how to characterize completely nonuniform exponential dichotomies using quadratic Lyapunov functions. The characterization can be expressed in terms of inequalities between matrices. In particular, we obtain converse theorems, by constructing explicitly quadratic Lyapunov functions for each nonuniform exponential dichotomy. We note that the nonuniform exponential dichotomies include as a very special case (uniform) exponential dichotomies. In particular, we recover in a very simple manner a complete characterization of uniform exponential dichotomies in terms of quadratic Lyapunov functions. We emphasize that our approach is new even in the uniform case.Furthermore, we show that the instability of a nonuniform exponential dichotomy persists under sufficiently small perturbations. The proof uses quadratic Lyapunov functions, and in particular avoids the use of invariant unstable manifolds which, to the best of our knowledge, are not known to exist in this general setting.  相似文献   

5.
We consider nonautonomous equations v=A(t)v in a Banach space that exhibit stable and unstable behaviors with respect to arbitrary growth rates ecρ(t) for some function ρ(t). This corresponds to the existence of a “generalized” exponential dichotomy, which is known to be robust. When ρ(t)≠t this behavior can be described as a type of parabolic dynamics. We consider the general case of nonuniform exponential dichotomies, for which the Lyapunov stability is not uniform. We show that for any sufficiently small perturbation f of a “generalized” exponential dichotomy there is a stable invariant manifold for the perturbed equation v=A(t)v+f(t,v). We also consider the case of exponential contractions, which allow a simpler treatment, and we show that they persist under sufficiently small nonlinear perturbations.  相似文献   

6.
For a nonautonomous linear equation x′ =  A(t)x we show how to characterize a nonuniform exponential dichotomy using strict Lyapunov functions. In particular, the stable and unstable subspaces are obtained from invariant families of cones determined by each Lyapunov function. We also obtain converse theorems, constructing explicitly a family of strict Lyapunov functions for each nonuniform exponential dichotomy. We emphasize that nonuniform exponential dichotomies include as a very particular case (uniform) exponential dichotomies.  相似文献   

7.
We construct topological conjugacies between linear and nonlinear evolution operators that admit either a nonuniform exponential contraction or a nonuniform exponential dichotomy. We consider evolution operators defined by nonautonomous differential equations x=A(t)x+f(t,x) in a Banach space. The conjugacies are obtained by first considering sufficiently small linear and nonlinear perturbations of linear equations x=A(t)x. In the case of linear perturbations, we construct in a more or less explicit manner topological conjugacies between the two linear flows. In the case of nonlinear perturbations, we obtain a version of the Grobman-Hartman theorem for nonuniformly hyperbolic dynamics. Furthermore, all the conjugacies that we construct are locally Hölder continuous provided that the vectors fields are of class C1. As a byproduct of our approach, we give conditions for the robustness of strong nonuniform exponential behavior, in the sense that under sufficiently small perturbations the structure determined by the stable and unstable bundles persists up to small variations. We also show that the constants determining the nonuniform exponential contraction or nonuniform exponential dichotomy vary continuously with the perturbation. All the results are obtained in Banach spaces.  相似文献   

8.
This paper focuses on nonlinear perturbations of flows in Banach spaces, corresponding to a nonautonomous dynamical system on measure chains admitting a nonuniform exponential dichotomy. We first define the nonuniform exponential dichotomy of linear nonuniformly hyperbolic systems on measure chains, then establish a new version of the Grobman-Hartman theorem for nonuniformly hyperbolic dynamics on measure chains with the help of nonuniform exponential dichotomies. Moreover, we also construct stable invariant manifolds for sufficiently small nonlinear perturbations of a nonuniform exponential dichotomy. In particular, it is shown that the stable invariant manifolds are Lipschitz in the initial values provided that the nonlinear perturbation is a sufficiently small Lipschitz perturbation.  相似文献   

9.
For a nonautonomous linear equation v=A(t)v in a Banach space with a nonuniform exponential dichotomy, we show that the nonlinear equation v=A(t)v+f(t,v,λ) has stable invariant manifolds Vλ which are Lipschitz in the parameter λ provided that f is a sufficiently small Lipschitz perturbation. Since any linear equation with nonzero Lyapunov exponents has a nonuniform exponential dichotomy, the above assumption is very general. We emphasize that passing from a classical uniform exponential dichotomy to a general nonuniform exponential dichotomy requires a substantially new approach.  相似文献   

10.
For nonautonomous linear equations x′ = A(t)x, we give a complete characterization of the existence of exponential behavior in terms of Lyapunov functions. In particular, we obtain an inverse theorem giving explicitly Lyapunov functions for each exponential dichotomy. The main novelty of our work is that we consider a very general type of nonuniform exponential dichotomy. This includes for example uniform exponential dichotomies, nonuniform exponential dichotomies and polynomial dichotomies. We also consider the case of different growth rates for the uniform and the nonuniform parts of the dichotomy. As an application of our work, we establish in a very direct manner the robustness of nonuniform exponential dichotomies under sufficiently small linear perturbations.  相似文献   

11.
We give new examples of noncommutative manifolds. In particular we construct a “strong” deformation of C(S2), consisting of a family of noncommutative 2-spheres, and study their analytic and topological properties.  相似文献   

12.
The importance of Lyapunov functions is well known. In the general setting of nonautonomous linear delay equations v=L(t)vt, we show how to characterize completely the existence of a nonuniform exponential contraction or of a nonuniform exponential dichotomy in terms of Lyapunov functions. This includes uniform exponential behavior as a very special case, and it provides an alternative (usually simpler and particularly more direct) approach to verify the existence of exponential behavior or to obtain the robustness of the dynamics under sufficiently small perturbations.  相似文献   

13.
For an arbitrary evolution family, we consider the notion of an exponential dichotomy with respect to a family of norms and characterize it completely in terms of the admissibility of bounded solutions, that is, the existence of a unique bounded solution for each bounded perturbation. In particular, by considering a family of Lyapunov norms, we recover the notion of a nonuniform exponential dichotomy. As a nontrivial application of the characterization, we establish the robustness of the notion of an exponential dichotomy with respect to a family of norms under sufficiently small Lipschitz and C 1 parameterized perturbations. Moreover, we establish the optimal regularity of the dependence on the parameter of the projections onto the stable spaces of the perturbation.  相似文献   

14.
First, we derive a new second variation formula which holds for minimal Legendrian submanifolds in Sasakian manifolds. Using this, we prove that any minimal Legendrian submanifold in an η-Einstein Sasakian manifold with “nonpositive” η-Ricci constant is stable. Next we introduce the notion of the Legendrian stability of minimal Legendrian submanifolds in Sasakian manifolds. Using our second variation formula, we find a general criterion for the Legendrian stability of minimal Legendrian submanifolds in η-Einstein Sasakian manifolds with “positive” η-Ricci constant.  相似文献   

15.
The purpose of this note is twofold: to introduce the notion of polynomial contraction for a linear nonautonomous dynamics with discrete time, and to show that it persists under sufficiently small linear and nonlinear perturbations. The notion of polynomial contraction mimics the notion of exponential contraction, but with the exponential decay replaced by a polynomial decay. We show that this behavior is exhibited by a large class of dynamics, by giving necessary conditions in terms of “polynomial” Lyapunov exponents. Finally, we establish the persistence of the asymptotic stability of a polynomial contraction under sufficiently small linear and nonlinear perturbations. We also consider the case of nonuniform polynomial contractions, for which the Lyapunov stability is not uniform.  相似文献   

16.
For delay difference equations with infinite delay we consider the notion of nonuniform exponential dichotomy. This includes the notion of uniform exponential dichotomy as a very special case. Our main aim is to establish a stable manifold theorem under sufficiently small nonlinear perturbations. We also establish the robustness of nonuniform exponential dichotomies under sufficiently small linear perturbations. Finally, we characterize the nonuniform exponential dichotomies in terms of strict Lyapunov sequences. In particular, we construct explicitly a strict Lyapunov sequence for each exponential dichotomy.  相似文献   

17.
Turaev-Viro invariants are defined via state sum polynomials associated to a special spine or a triangulation of a compact 3-manifold. By evaluation of the state sum at any solution of the so-called Biedenharn-Elliott equations, one obtains a homeomorphism invariant of the manifold (“numerical Turaev-Viro invariant”). The Biedenharn-Elliott equations define a polynomial ideal. The key observation of this paper is that the coset of the state sum polynomial with respect to that ideal is a homeomorphism invariant of the manifold (“ideal Turaev-Viro invariant”), stronger than the numerical Turaev-Viro invariants. Using computer algebra, we obtain computational results on several examples of ideal Turaev-Viro invariants, for all closed orientable irreducible manifolds of complexity at most 9.  相似文献   

18.
19.
We establish the existence of smooth integral stable manifoldsfor sufficiently small perturbations of nonuniform exponentialdichotomies in Banach spaces. We also consider the case of anonautonomous dynamics given by a sequence of C1 maps. The optimalsmoothness of the manifolds is obtained at the same time astheir existence, using a convenient lemma of Henry. Furthermore,we obtain not only the exponential decay of the dynamics alongthe stable manifolds, but also of its derivative. In addition,we give a characterization of the stable manifolds in termsof the maximal exponential growth rate that is allowed, we discusshow the manifolds vary with the perturbations, and we discusstheir equivariance with respect to a sequence of linear operators.  相似文献   

20.
We consider linear equations v=A(t)v with a polynomial asymptotic behavior, that can be stable, unstable and central. We show that this behavior is exhibited by a large class of differential equations, by giving necessary and sufficient conditions in terms of generalized “polynomial” Lyapunov exponents for the existence of polynomial behavior. In particular, any linear equation in block form in a finite-dimensional space, with three blocks having “polynomial” Lyapunov exponents respectively negative, positive, and zero, has a nonuniform version of polynomial trichotomy, which corresponds to the usual notion of trichotomy but now with polynomial growth rates. We also obtain sharp bounds for the constants in the notion of polynomial trichotomy. In addition, we establish the persistence under sufficiently small nonlinear perturbations of the stability of a nonuniform polynomial contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号