首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider a boundary value problem for the stationary diffusion equation outside cuts on the plane. The Dirichlet condition is posed on one side of each cut, and an oblique derivative condition is posed on the other side. We prove existence and uniqueness theorems for the solution of the boundary value problem. We obtain an integral representation of a solution in the form of potentials. The densities of these potentials are found from a system of Fredholm integral equations of the second kind, which is uniquely solvable. We obtain closed asymptotic formulas for the gradient of the solution of the boundary value problem at the endpoints of the cuts.  相似文献   

2.
We consider a boundary value problem for harmonic functions outside cuts on the plane. The jump of the normal derivative and a linear combination of the normal derivative on one side with the jump of the unknown function are given on each cut. The problem is considered with three conditions at infinity, which lead to distinct results on the existence and number of solutions. We obtain an integral representation of the solution in the form of potentials whose density satisfies a uniquely solvable Fredholm integral equation of the second kind.  相似文献   

3.
We consider a three-dimensional boundary value problem for the Laplace equation on a thin plane screen with boundary conditions for the “directional derivative”: boundary conditions for the derivative of the unknown function in the directions of vector fields defined on the screen surface are posed on each side of the screen. We study the case in which the direction of these vector fields is close to the direction of the normal to the screen surface. This problem can be reduced to a system of two boundary integral equations with singular and hypersingular integrals treated in the sense of the Hadamard finite value. The resulting integral equations are characterized by the presence of integral-free terms that contain the surface gradient of one of the unknown functions. We prove the unique solvability of this system of integral equations and the existence of a solution of the considered boundary value problem and its uniqueness under certain assumptions.  相似文献   

4.
We consider a boundary value problem for the Laplace equation outside cuts on a plane. Boundary conditions of the third kind, which are in general different on different sides of each cut, are posed on the cuts. We show that the classical solution of the problem exists and is unique. We obtain an integral representation for the solution of the problem in the form of potentials whose densities are found from a uniquely solvable system of Fredholm integral equations of the second kind.  相似文献   

5.
A boundary value problem for harmonic functions outside cuts in a plane is considered. The jump of the normal derivative is specified on the cuts as well as a linear combination of the normal derivative on one side of the cut and the jump of the unknown function. The problem is studied with three different conditions at infinity, which lead to different results on existence and number of solutions. The integral representation for a solution is obtained in the form of potentials density in which satisfies the uniquely solvable Fredholm integral equation of the 2nd kind. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
We obtain existence and uniqueness theorems for the solution of the inverse problem of simultaneously determining the right-hand side and the coefficient of a lower-order derivative in a parabolic equation under an integral observation condition. We give explicit estimates for the maximum absolute value of the unknown right-hand side and the unknown coefficient of the equation with constants expressed via the input data of the problem. We present a nontrivial example of an inverse problem to which our theorems apply.  相似文献   

7.
Valentina Kolybasova  Pavel Krutitskii 《PAMM》2007,7(1):2040089-2040090
A boundary value problem for the Helmholtz equation outside an open arc in a plane is studied with mixed boundary conditions. In doing so, the Dirichlet condition is specified on one side of the open arc and the boundary condition of the third kind is specified on the other side of the open arc. We consider non-propagative Helmholtz equation, real-valued solutions of which satisfy maximum principle. By using the potential theory the boundary value problem is reduced to a system of singular integral equations with additional conditions. By regularization and subsequent transformations, this system is reduced to a vector Fredholm equation of the second kind and index zero. It is proved that the obtained vector Fredholm equation is uniquely solvable. Therefore the integral representation for a solution of the original boundary value problem is obtained. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We prove the existence and uniqueness of an energy class solution of an initial–boundary value problem for a semilinear equation in divergence form. We consider the case in which an inhomogeneous third boundary condition is posed on one part of the lateral surface of the cylinder in which the equation is studied and the homogeneous Dirichlet boundary condition is posed on the other part of the lateral surface.  相似文献   

9.
We obtain an integral representation of the solution of the Tricomi problem for the Lavrent’ev-Bitsadze equation with mixed boundary conditions in the elliptic part of the domain and with zero posed on one characteristic of the equation. The gradient of the solution is not continuous but satisfies some condition referred to as the “generalized Frankl matching condition.” We state theorems implying that the inhomogeneous Tricomi problem either has a unique solution or is determined modulo a solution of the homogeneous Tricomi problem.  相似文献   

10.
In a domain with free boundary, we consider the inverse problem of determination of the coefficient of the first derivative of the unknown function in a parabolic equation with weak power degeneration. The Stefan condition and the integral condition are used as overdetermination conditions. The conditions for existence and uniqueness of the classical solution of the posed problem are established.  相似文献   

11.
We consider a nonlocal initial–boundary value Bitsadze–Samarskii problem for a spatially one-dimensional parabolic second-order system in a semibounded domain with nonsmooth lateral boundary. The boundary integral equation method is used to construct a classical solution of this problem under the condition that the vector function on the right-hand side in the nonlocal boundary condition only has a continuous derivative of order 1/2 vanishing at t = 0. The smoothness of the solution is studied.  相似文献   

12.
In this work we consider the first boundary value problem for a parabolic equation of second order with a small parameter on a half-axis (i.e., we consider the one-dimensional case). We take the zero initial condition. We construct the global (that is, the caustic points are taken into account) asymptotics of a solution for the boundary value problem. The asymptotic solution of this problem has a different structure depending on the sign of the coefficient (the drift coefficient) at the derivative of first order at a boundary point. The constructed asymptotic solutions are justified.  相似文献   

13.
For an equation of mixed elliptic-parabolic type, we consider an interior-boundary value problem in which the Dirichlet condition is posed on the elliptic part of the boundary and a point condition relating generalized derivatives and fractional integrals with the Gauss hypergeometric function of the values of the solution on the characteristics to the values of the solution and its derivative on the parabolic degeneration line is posed on the hyperbolic part.  相似文献   

14.
Method of boundary integral equations is applied to the initial-boundary value problem for an equation of fourth order and composite type in 3-D multiply connected domain with Dirichlet boundary condition. The problem controls nonsteady internal gravity waves in a stratified fluid. The problem is reduced to the time-dependent integral equation. It is shown that the integral equation is solvable. The solution of the problem is obtained in the form of dynamic potentials. The density in potentials obeys this integral equation. Therefore, the existence theorem is proved. Besides, the uniqueness of the solution is studied. All results hold for both interior and exterior domains with appropriate conditions at infinity.  相似文献   

15.
We consider a linear integral equation with a supersingular integral treated in the sense of the Hadamard finite value, which arises in the solution of the Neumann boundary value problem for the Laplace equation with the representation of the solution in the form of a doublelayer potential. We consider the case in which the exterior boundary value problem is solved outside a plane surface (a screen). For the integral operator in the above-mentioned equation, we suggest quadrature formulas of the vortex loop method with regularization, which provide its approximation on the entire surface when using an unstructured partition. In the problem in question, the derivative of the unknown density of the double-layer potential, as well as the errors of quadrature formulas, has singularities in a neighborhood of the screen edge. We construct a numerical scheme for the integral equation on the basis of the suggested quadrature formulas and prove an estimate for the norm of the inverse matrix of the resulting system of linear equations and the uniform convergence of the numerical solutions to the exact solution of the supersingular integral equation on the grid.  相似文献   

16.
We study initial boundary value problems for linear scalar evolutionpartial differential equations, with spatial derivatives ofarbitrary order, posed on the domain {t > 0, 0 < x <L}. We show that the solution can be expressed as an integralin the complex k-plane. This integral is defined in terms ofan x-transform of the initial condition and a t-transform ofthe boundary conditions. The derivation of this integral representationrelies on the analysis of the global relation, which is an algebraicrelation defined in the complex k-plane coupling all boundaryvalues of the solution. For particular cases, such as the case of periodic boundaryconditions, or the case of boundary value problems for even-orderPDEs, it is possible to obtain directly from the global relationan alternative representation for the solution, in the formof an infinite series. We stress, however, that there existinitial boundary value problems for which the only representationis an integral which cannot be written as an infinite series.An example of such a problem is provided by the linearized versionof the KdV equation. Similarly, in general the solution of odd-orderlinear initial boundary value problems on a finite intervalcannot be expressed in terms of an infinite series.  相似文献   

17.
The mixed Dirichlet-Neumann problem for the Laplace equation in a bounded connected plane domain with cuts (cracks) is studied. The Neumann condition is given on closed curves making up the boundary of a domain, while the Dirichlet condition is specified on the cuts. The existence of a classical solution is proved by potential theory and boundary integral equation method. The integral representation for a solution is obtained in the form of potentials. The density in potentials satisfies the uniquely solvable Fredholm integral equation of the second kind and index zero. Singularities of the gradient of the solution at the tips of cuts are investigated.  相似文献   

18.
The mixed problem for the Laplace equation outside cuts on the plane is considered. As boundary conditions, the value of the desired function on one side of each of the cuts and the value of its oblique derivative on the other side are prescribed. This problem generalizes the mixed Dirichlet-Neumann problem. By using the potential method, the problem reduces to a uniquely solvable Fredholm integral equation of the second kind. __________ Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 12, No. 6, pp. 115–135, 2006.  相似文献   

19.
We study an inhomogeneous boundary value problem for the stationary magnetohydrodynamic equations for a viscous incompressible fluid corresponding to the case in which the tangential component of the magnetic field is specified on the boundary and the Dirichlet condition is posed for the velocity. We derive sufficient conditions on the input data for the global solvability of the problem and the local uniqueness of the solution.  相似文献   

20.
We study a problem of optimal boundary control of vibrations of a one-dimensional elastic string, the objective being to bring the string from an arbitrary initial state into an arbitrary terminal state. The control is by the displacement at one end of the string, and a homogeneous boundary condition containing the time derivative is posed at the other end. We study the corresponding initial-boundary value problem in the sense of a generalized solution in the Sobolev space and prove existence and uniqueness theorems for the solution. An optimal boundary control in the sense of minimization of the boundary energy is constructed in closed analytic form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号