首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper(II) coordination polymers have attracted considerable interest due to their catalytic, adsorption, luminescence and magnetic properties. The reactions of copper(II) with 2‐amino‐4‐sulfobenzoic acid (H2asba) in the presence/absence of the auxiliary chelating ligand 1,10‐phenanthroline (phen) under ambient conditions yielded two supramolecular coordination polymers, namely (3‐amino‐4‐carboxybenzene‐1‐sulfonato‐κO1)bis(1,10‐phenanthroline‐κ2N,N′)copper(II) 3‐amino‐4‐carboxybenzene‐1‐sulfonate monohydrate, [Cu(C7H6N2O5S)(C12H8N2)2](C7H6N2O5S)·H2O, (1), and catena‐poly[[diaquacopper(II)]‐μ‐3‐amino‐4‐carboxylatobenzene‐1‐sulfonato‐κ2O4:O4′], [Cu(C7H6N2O5S)(H2O)2]n, (2). The products were characterized by FT–IR spectroscopy, thermogravimetric analysis (TGA), solid‐state UV–Vis spectroscopy and single‐crystal X‐ray diffraction analysis, as well as by variable‐temperature powder X‐ray diffraction analysis (VT‐PXRD). Intermolecular π–π stacking interactions in (1) link the mononuclear copper(II) cation units into a supramolecular polymeric chain, which is further extended into a supramolecular double chain through interchain hydrogen bonds. Supramolecular double chains are then extended into a two‐dimensional supramolecular double layer through hydrogen bonds between the lattice Hasba anions, H2O molecules and double chains. Left‐ and right‐handed 21 helices formed by the Hasba anions are arranged alternately within the two‐dimensional supramolecular double layers. Complex (2) exhibits a polymeric chain which is further extended into a three‐dimensional supramolecular network through interchain hydrogen bonds. Complex (1) shows a reversible dehydration–rehydration behaviour, while complex (2) shows an irreversible dehydration–rehydration behaviour.  相似文献   

2.
The reaction of Cu(NO3)2·3H2O with 2,4′‐oxybis(benzoic acid) and 4,4′‐bipyridine under hydrothermal conditions produced a new mixed‐ligand two‐dimensional copper(II) coordination polymer, namely poly[[(μ‐4,4′‐bipyridine‐κ2N ,N ′)[μ‐2,4′‐oxybis(benzoato)‐κ4O 2,O 2′:O 4,O 4′]copper(II)] monohydrate], {[Cu(C14H8O5)(C10H8N2)]·H2O}n , which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction. The X‐ray diffraction crystal structure analysis reveals that the CuII ions are connected to form a two‐dimensional wave‐like network through 4,4′‐bipyridine and 2,4′‐oxybis(benzoate) ligands. The two‐dimensional layers are expanded into a three‐dimensional supramolecular structure through intermolecular O—H…O and C—H…O hydrogen bonds. Furthermore, magnetic susceptibility measurements indicate that the complex shows weak antiferromagnetic interactions between adjacent CuII ions.  相似文献   

3.
The title compound, [Cu2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2]n, contains two crystallographically unique CuII centres, each lying on a twofold axis and having a slightly distorted octahedral environment. One CuII centre is coordinated by two bridging 4,4′‐bipyridine (4,4′‐bipy) ligands, two sulfate anions and two aqua ligands. The second is surrounded by two 4,4′‐bipy N atoms and four O atoms, two from bridging sulfate anions and two from ethane‐1,2‐diol ligands. The sulfate anion bridges adjacent CuII centres, leading to the formation of linear ...Cu1–Cu2–Cu1–Cu2... chains. Adjacent chains are further bridged by 4,4′‐bipy ligands, which are also located on the twofold axis, resulting in a two‐dimensional layered polymer. In the crystal structure, extensive O—H...O hydrogen‐bonding interactions between water molecules, ethane‐1,2‐diol molecules and sulfate anions lead to the formation of a three‐dimensional supramolecular network structure.  相似文献   

4.
The metal complexes [Cu(NO3)2(H2O)2(H2azbpz)2] · 2H2O ( 1 ) and [Ni(H2O)4(H2azbpz)2](NO3)2 · 2H2O ( 2 ) of 4,4′‐azobis(3,5‐dimethyl‐1H‐pyrazole) (H2azbpz) incorporate the bipyrazole as a monodentate ligand and are associated into supramolecular architectures by hydrogen bonds and azo‐pz π interactions in the solid state. In 1 a cis configuration is integrated and the NH function adjacent to the metal‐coordinating nitrogen atom gives rise to a seven‐membered anion‐assisted hydrogen‐bonded ring around the central metal atom bringing the NH function in endo‐position to the azo‐bridge. The interplay of hydrogen‐bonds and dimeric azo‐pz π interactions in 1 forms one‐dimensional supramolecular chains, which are further interconnected by a heterodromic D2h symmetric tetrameric water ring. In 2 a trans form of H2azbpz is mono‐coordinated and the synergy of hydrogen‐bonded rings around the central metal atom and continuous azo‐pz π interactions form a two‐dimensional supramolecular network structure. The supramolecular packings of 1 and 2 is further underpinned by the analysis of their Hirshfeld surface areas.  相似文献   

5.
Self‐assembly reaction between hydrated rare‐earth (RE) nitrates RE(NO3)3 · 6H2O with K3Fe(CN)6 in H2O/DMF solution by employing the tridentate ligand 2, 2′:6′,2′′‐terpyridine (terpy) as a capping ligand has yielded three cyanide‐bridged compounds [RE(terpy)(DMF)(H2O)2][Fe(CN)6] · 6H2O [RE = Y ( 1 ), Tb ( 2 ), Dy ( 3 )]. FT‐IR spectra confirmed the presence of terpy ligands and cyanide groups in compounds 1 – 3 . Single‐crystal X‐ray structural analysis indicated that these compounds are isomorphous and adopt neutral [RE2Fe2] molecular squares, which are further linked through hydrogen bonding interactions to generate a three‐dimensional supramolecular network. Magnetic susceptibility measurements revealed that significant single ion magnetic anisotropy dominates the properties of these compounds.  相似文献   

6.
The coordination polymers, {[Cu(Hbidc)(2, 2′‐bpy)(H2O)] · 2H2O}n ( 1 ) and {[Mn(Hbidc)(2, 2′‐bpy) (H2O)2] · 2H2O}n ( 2 ) (H3bidc = benzimidazole‐5, 6‐dicarboxylic acid, 2, 2′‐bpy = 2, 2′‐bipyridine), were synthesized in solution and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis (TGA), and single‐crystal X‐ray diffraction. Complexes 1 and 2 consist of different 1D chain structures. In both compounds, 2, 2′‐bpy is chelating in a bidentate manner, whereas the Hbidc ligands in complexes 1 and 2 display chelating‐bridging tridentate and bridging bidentate coordination modes. The two complexes are further extended into 3D supramolecular structures through O–H ··· O and N–H ··· O hydrogen bonds. The thermal stabilities of complexes 1 and 2 were studied by thermogravimetric analyses (TGA).  相似文献   

7.
Four new transitional metal supramolecular architectures, [Zn(cca)(2,2′‐bpy)]n · n(2,2′‐bpy) ( 1 ), [Cu(cca)(2,2′‐bpy)]n ( 2 ), [Zn(bpdc)(2,2′‐bpy)(H2O)]n · 0.5nDMF · 1.5nH2O ( 3 ), and [Co(bpdc)(2,2′‐bpy)(H2O)]n · nH2O ( 4 ) (H2cca = p‐carboxycinnamic acid; H2bpdc = 4,4′‐biphenyldicarboxylic acid; 2,2′‐bpy = 2,2′‐bipyridine) were synthesized by hydrothermal reactions and characterized by single crystal X‐ray diffraction, elemental analyses, and IR spectroscopy. Although the metal ions in these four compounds are bridged by linear dicarboxylic acid into 1D infinite chains, there are different π–π stacking interactions between the chains, which results in the formation of different 3D supramolecular networks. Compound 1 is of a 3D open‐framework with free 2,2′‐bpy molecules in the channels, whereas compound 2 is of a complicated 3D supramolecular network. Compounds 3 and 4 are isostructural. Both compounds have open‐frameworks.  相似文献   

8.
A novel supramolecular complex {[Cu(n)(en)2·H2O]·[Cu(I)2(CN)4]}n (en = ethylenediamine), in which the cyanide‐bridged Cu(I) forms the honeycomb‐like skeleton host and the Cu(n) complex ion [Cu(en)2·H2O]2+ is encapsulated in the center of the channel cavity of the skeleton, was synthesized by two different methods. The complex was also characterized by elemental analysis, ICP analysis, IR spectra and thermal analysis. The adsorption and desorption studies of the complex indicate that H2O and NH3 can be desorbed and re‐adsorbed without collapse of the channel structure of the supramolecule.  相似文献   

9.
Multifunctional 2‐amino‐5‐sulfobenzoic acid (H2afsb) can exhibit a variety of roles during the construction of supramolecular coordination polymers. The pendant carboxylic acid, sulfonic acid and amino groups could not only play a role in directing bonding but could also have the potential to act as hydrogen‐bond donors and acceptors, resulting in extended high‐dimensional supramolecular networks. Two new CuII coordination compounds, namely catena‐poly[[[diaquacopper(II)]‐μ‐1,6‐bis(1H‐1,2,4‐triazol‐1‐yl)hexane‐κ2N4:N4′] bis(3‐amino‐4‐carboxybenzenesulfonate) dihydrate], {[Cu(C10H16N6)2(H2O)2](C7H6NO5S)2·2H2O}n or {[Cu(bth)2(H2O)2](Hafsb)2·2H2O}n, (1), and bis(μ‐2‐amino‐5‐sulfonatobenzoato‐κ2O1:O1′)bis{μ‐1,2‐bis[(1H‐imidazol‐1‐yl)methyl]benzene‐κ2N3:N3′}bis[aquacopper(II)] trihydrate, [Cu2(C7H5NO5S)2(C14H14N4)2(H2O)2]·3H2O or [Cu2(afsb)2(obix)2(H2O)2]·3H2O, (2), have been obtained through the assembly between H2afsb and the CuII ion in the presence of the flexible N‐donor ligands 1,6‐bis(1H‐1,2,4‐triazol‐1‐yl)hexane (bth) and 1,2‐bis[(1H‐1,2,4‐triazol‐1‐yl)methyl]benzene (obix), respectively. Compound (1) consists of a cationic coordination polymeric chain and 3‐amino‐4‐carboxybenzenesulfonate (Hafsb) anions. Compound (2) exhibits an asymmetric dinuclear structure. There are hydrogen‐bonded networks within the lattices of (1) and (2). Interestingly, both (1) and (2) exhibit reversible dehydration–rehydration behaviour.  相似文献   

10.
A novel modified polyoxometalate, {PMo12O40[Cu(2,2′‐bpy)]}[Cu(2,2′‐bpy)(en)(H2O)]2 [2,2′‐bpy is 2,2′‐bipyridyl (C10H8N2) and en is ethylenediamine (C2H8N2)], has been synthesized hydrothermally and structurally characterized by elemental analysis, TG, IR, XPS and single‐crystal X‐ray diffraction. The structural analysis reveals that the compound contains the reduced Keggin polyanion [PMo12O40]6? as the parent unit, which is monocapped by [Cu(2,2′‐bpy)]2+ fragments via four bridging O atoms on an {Mo4O4} pit and bi‐supported by two [Cu(2,2′‐bpy)(en)(H2O)]2+ coordination cations simultaneously. There exist strong intramolecular π–π stacking between the capping and supporting units, which play a stabilizing role during the crystallization of the compound. Adjacent POM clusters are further aggregated to form a three‐dimensional supramolecular network through noncovalent forces, hydrogen bonding and π–π stacking interactions. In addition, the photocatalytic properties were investigated in detail, and the results indicated that the compound can be used as a photocatalyst towards the decomposition of the organic pollutant methylene blue (MB).  相似文献   

11.
Chiral coordination polymers have attracted intense interest mainly due to their potential applications. Hence, two new chiral copper(II) coordination polymers {[Cu(tsgluO)(H2O)]2·3H2O}n ( 1 ) and [Cu(tsgluO)(2,2′‐bipy)]n ( 2 ) (H2tsglu?(+)‐N‐tosyl‐l‐glutamic acid; 2,2′‐bipy?2,2′‐bipyridine) were synthesized in the absence or presence of 2,2′‐bipy ligand and structurally characterized. A single crystal X‐ray diffraction study revealed that compound 1 consists of a paddle‐wheel dicopper(II) core, which links other equivalents via four tsgluO2? ligands to form a 1D double chain. Such a chain is further interconnected through weak π‐π stacking and hydrogen bonding interactions to form a 3D H‐bonded supramolecular structure with 1D channels hosting lattice water molecules. Whereas, compound 2 , containing the coordinating 2,2′‐bipy, gives rise to a ladder‐like 1D double chain. Antiferromagnetic interactions were observed in 1 and 2 .  相似文献   

12.
In the title compound, [CuCl(C7H7O3S)(C12H8N2)(H2O)], the central Cu atom is coordinated by a water mol­ecule, a chloride ion, an O‐monodentate p‐toluene­sulfonate anion and an N,N′‐bidentate 1,10‐phenanthroline ligand. The copper environment is best described as a slightly distorted square pyramid, with bond distances Cu—Cl 2.2282 (9) Å, Cu—OW 1.984 (3) Å, and Cu—N 2.006 (3) and 2.028 (3) Å; the apical Cu—O distance is 2.281 (2) Å. In the supramolecular structure, π–π‐stacking stabilization is observed, and classical and non‐classical hydrogen bonds also play an important role.  相似文献   

13.
A new polynuclear copper‐complex‐substituted dimeric tungstoarsenate(V), H2[{Cu(2,2′‐bpy)}8(H2O)2(AsW9O34)2] · 12H2O ( 1 ) (2,2′‐bpy = 2,2′‐bipydine), was synthesized hydrothermally and its structure was determined by single‐crystal X‐ray diffraction. The title compound has Ci symmetry and consists of two trilacunary Keggin anions [α‐AsW9O34]9– supported by eight copper complex cations. The compound was also characterized by IR and fluorescence spectroscopy, TG analysis, and magnetic measurements. The emission spectrum of the compound in solid‐state exhibits a redshift relative to those of Na8[A‐HAsW9O34] · 11H2O and the free ligand 2,2′‐bpy. Magnetic measurements of the compound indicate competing ferro‐ and antiferromagnetic intramolecular coupling among the CuII atoms in the cluster anion.  相似文献   

14.
The title dimeric complex, bis{μ‐2,2′‐[hexane‐1,6‐diyl­bis(nitrilo­methyl­idyne)]­diphenolato‐1:2κ4O,N:N′,O′}dicopper(II),[Cu2(C20H22N2O2)2], has been investigated by single‐crystal X‐ray diffraction, by thermogravimetric analysis and differential scanning calorimetry, and also by FT–IR spectroscopy. Different synthetic and crystallization procedures gave crystals which were quite different in appearance, and it was initially thought that these were different polymorphic forms. Subsequent structure determination showed, in fact, serendipitous preparation of crystals in the P41 space group by one method and in space group P43 by the other. In these enantiomorphic structures, the Cu atoms have a distorted flattened tetrahedral coordination, with Cu—N and Cu—O distances in the ranges 1.954 (4)–1.983 (4) and 1.887 (4)–1.903 (4) Å, respectively.  相似文献   

15.
The bromo‐substituted aromatic dicarboxylic acid 5‐amino‐2,4,6‐tribromoisophthalic acid (H2ATBIP) was used to assemble with CdII ions in the presence of the N‐donor flexible bipyridyl ligands 3,3′‐(diazene‐1,2‐diyl)dipyridine (mzpy) and 1,3‐bis(pyridin‐3‐ylmethyl)urea (3bpmu), leading to the formation of two chain coordination polymers by adopting solution methods, namely, catena‐poly[[[triaqua(5‐amino‐2,4,6‐tribromoisophthalato‐κO)cadmium(II)]‐μ‐3,3′‐(diazene‐1,2‐diyl)dipyridine‐κ2N1:N1′] dihydrate], {[Cd(C8H2Br3NO4)(C10H8N4)(H2O)3]·2H2O}n or {[Cd(ATBIP)(mzpy)(H2O)3]·2H2O}n, ( 1 ), and catena‐poly[[[tetraaquacadmium(II)]‐μ‐1,3‐bis(pyridin‐3‐ylmethyl)urea‐κ2N1:N1′‐[diaquabis(5‐amino‐2,4,6‐tribromoisophthalato‐κO)cadmium(II)]‐μ‐1,3‐bis(pyridin‐3‐ylmethyl)urea‐κ2N1:N1′] octahydrate], {[Cd(C8H2Br3NO4)(C12H12N4O)(H2O)3]·4H2O}n or {[Cd(ATBIP)(3bpmu)(H2O)3]·4H2O}n, ( 2 ). Both complexes were characterized by FT–IR spectroscopic analysis, thermogravimetric analysis (TGA), solid‐state diffuse reflectance UV–Vis spectroscopic analysis, and single‐crystal and powder X‐ray diffraction analysis (PXRD). The mzpy and 3bpmu ligands bridge the CdII metal centres in ( 1 ) and ( 2 ) into one‐dimensional chains, and the ATBIP2− ligands show a monodentate coordination to the CdII centres in both coordination polymers. A discrete water tetramer exists in ( 1 ). Within the chains of ( 1 ) and ( 2 ), there are halogen bonds between adjacent ATBIP2− and mzpy or 3bpmu ligands, as well as hydrogen bonds between the ATBIP2− ligands and the coordinated water molecules. With the aid of weak interactions, the structures of ( 1 ) and ( 2 ) are further extended into three‐dimensional supramolecular networks. An analysis of the solid‐state diffuse reflectance UV–Vis spectra of ( 1 ) and ( 2 ) indicates that a wide indirect band gap exists in both complexes. Complexes ( 1 ) and ( 2 ) exhibit irreversible and reversible dehydration–rehydration behaviours, respectively, and the solid‐state fluorescence properties of both complexes have been studied.  相似文献   

16.
The organic‐inorganic hybrid nonlinear optical (NLO) material NH4B(d‐ (+)‐C4H4O5)2 · H2O (NBC) was synthesized in a borate‐carboxylic acid system. Its structure was determined by single crystal X‐ray diffraction. It crystallizes in the orthorhombic system, space group Pna21 (No. 33), with cell parameters a = 11.484(6) Å, b = 5.354(3) Å, c = 21.079(12) Å, V = 1296.0(12), Z = 4. It exhibits a three‐dimensional pseudo tunnel structure consisting of fundamental building block [B(d‐ (+)‐C4H4O5)2] anions. The small cavities are occupied by the H2O molecules and NH4+ cations, which stabilize the whole structure by O–H ··· O and N–H ··· O hydrogen bonds. The powder X‐ray diffraction (PXRD) of the crystal was also recorded. Elemental analyses, FT‐IR and FT‐Raman spectra analyses, thermal analysis, and diffuse‐reflectance spectra for the compound are also presented, as are band structures and density of states calculation. Nonlinear optical measurements indicate that the material has second harmonic generation (SHG) properties and is phase‐matchable.  相似文献   

17.
The reaction of CdCl2 · 2.5H2O with 1,1′‐bis(3‐carboxybenzyl)‐4,4′‐bipyridinium dichloride (H2L1 · Cl2) or 4,4′‐bis[(3‐carboxypyridino)methyl]‐biphenyl dichloride (H2L2 · Cl2) in a dimethylformamide/methanol mixed‐solvent system at room temperature, affording the complexes [(CdCl2)3(L1)3]n ( 1 ) and {[CdCl2(L2)(H2O)2] · 2H2O}n ( 2 ). They were characterized by elemental analyses, IR spectroscopy, and single‐crystal X‐ray diffraction. Both 1 and 2 exhibit 1D coordination networks, which further stack into a 3D supramolecular structure by hydrogen bonding and π–π interactions. Furthermore, these two complexes exhibit different photochromic behavior in the solid state, which may originate from different charge‐distributions of H2L1 · Cl2 and H2L2 · Cl2 ligands.  相似文献   

18.
Much attention has been paid by chemists to the construction of supramolecular coordination compounds based on the multifunctional ligand 5‐sulfosalicylic acid (H3SSA) due to the structural and biological interest of these compounds. However, no coordination compounds have been reported for the multifunctional amino‐substituted sulfobenzoate ligand 2‐amino‐5‐sulfobenzoic acid (H2asba). We expected that H2asba could be a suitable building block for the assembly of supramolecular networks due to its interesting structural characteristics. The reaction of cadmium(II) nitrate with H2asba in the presence of the auxiliary flexible dipyridylamide ligand N,N′‐bis[(pyridin‐4‐yl)methyl]oxamide (4bpme) under ambient conditions formed a new mixed‐ligand coordination compound, namely bis(3‐amino‐4‐carboxybenzenesulfonato‐κO1)diaquabis{N,N′‐bis[(pyridin‐4‐yl)methyl]oxamide‐κN}cadmium(II)–N,N′‐bis[(pyridin‐4‐yl)methyl]oxamide–water (1/1/4), [Cd(C7H6NO5S)2(C14H14N4O2)2(H2O)2]·C14H14N4O2·4H2O, (1), which was characterized by single‐crystal and powder X‐ray diffraction analysis (PXRD), FT–IR spectroscopy, thermogravimetric analysis (TG), and UV–Vis and photoluminescence spectroscopic analyses in the solid state. The central CdII atom in (1) occupies a special position on a centre of inversion and exhibits a slightly distorted octahedral geometry, being coordinated by two N atoms from two monodentate 4bpme ligands, four O atoms from two monodentate 4‐amino‐3‐carboxybenzenesulfonate (Hasba) ligands and two coordinated water molecules. Interestingly, complex (1) further extends into a threefold polycatenated 0D→2D (0D is zero‐dimensional and 2D is two‐dimensional) interpenetrated supramolecular two‐dimensional (4,4) layer through intermolecular hydrogen bonding. The interlayer hydrogen bonding further links adjacent threefold polycatenated two‐dimensional layers into a three‐dimensional network. The optical properties of complex (1) indicate that it may be used as a potential indirect band gap semiconductor material. Complex (1) exhibits an irreversible dehydration–rehydration behaviour. The fluorescence properties have also been investigated in the solid state at room temperature.  相似文献   

19.
With regard to crystal engineering, building block or modular assembly methodologies have shown great success in the design and construction of metal–organic coordination polymers. The critical factor for the construction of coordination polymers is the rational choice of the organic building blocks and the metal centre. The reaction of Zn(OAc)2·2H2O (OAc is acetate) with 3‐nitrobenzoic acid (HNBA) and 4,4′‐bipyridine (4,4′‐bipy) under hydrothermal conditions produced a two‐dimensional zinc(II) supramolecular architecture, catena‐poly[[bis(3‐nitrobenzoato‐κ2O,O′)zinc(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′], [Zn(C7H4NO4)2(C10H8N2)]n or [Zn(NBA)2(4,4′‐bipy)]n, which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction analysis. The ZnII ions are connected by the 4,4′‐bipy ligands to form a one‐dimensional zigzag chain and the chains are decorated with anionic NBA ligands which interact further through aromatic π–π stacking interactions, expanding the structure into a threefold interpenetrated two‐dimensional supramolecular architecture. The solid‐state fluorescence analysis indicates a slight blue shift compared with pure 4,4′‐bipyridine and HNBA.  相似文献   

20.
A novel supramolecular framework, catena‐poly[[[aqua(2‐phenylquinoline‐4‐carboxylato‐κO)silver(I)]‐μ‐4,4′‐bipyridine‐κ2N:N′] dihydrate], {[Ag(C16H10NO2)(C10H8N2)(H2O)]·2H2O}n, has been synthesized and structurally characterized. The AgI centres are four‐coordinated and bridged by 4,4′‐bipyridine (4,4′‐bipy) ligands to form a one‐dimensional Ag–bipy chain. The Ag–bipy chains are further linked together by intermolecular O—H...O and O—H...N hydrogen‐bonding interactions between adjacent chains, resulting in a three‐dimensional framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号