首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given a graph G, a total k-coloring of G is a simultaneous coloring of the vertices and edges of G with k colors. Denote χve (G) the total chromatic number of G, and c(Σ) the Euler characteristic of a surfase Σ. In this paper, we prove that for any simple graph G which can be embedded in a surface Σ with Euler characteristic c(Σ), χve (G) = Δ (G) + 1 if c(Σ) > 0 and Δ (G) ≥ 13, or, if c(Σ) = 0 and Δ (G) ≥ 14. This result generalizes results in [3], [4], [5] by Borodin.  相似文献   

2.
In 1973, P. Erdös conjectured that for eachkε2, there exists a constantc k so that ifG is a graph onn vertices andG has no odd cycle with length less thanc k n 1/k , then the chromatic number ofG is at mostk+1. Constructions due to Lovász and Schriver show thatc k , if it exists, must be at least 1. In this paper we settle Erdös’ conjecture in the affirmative. We actually prove a stronger result which provides an upper bound on the chromatic number of a graph in which we have a bound on the chromatic number of subgraphs with small diameter.  相似文献   

3.
4.
Bollobás, Erdös, Simonovits, and Szemerédi conjectured [1] that for each positive constantc there exists a constantg(c) such that ifG is any graph which cannot be made 3-chromatic by the omission ofcn 2 edges, thenG contains a 4-chromatic subgraph with at mostg(c) vertices. Here we establish the following generalization which was suggested by Erdös [2]: For each positive constantc and positive integerk there exist positive integersf k(c) andn o such that ifG is any graph with more thann o vertices having the property that the chromatic number ofG cannot be made less thank by the omission of at mostcn 2 edges, thenG contains ak-chromatic subgraph with at mostf k(c) vertices.  相似文献   

5.
6.
The packing chromatic number \(\chi _{\rho }(G)\) of a graph G is the smallest integer k such that the vertex set of G can be partitioned into sets \(V_i\), \(i\in [k]\), where each \(V_i\) is an i-packing. In this paper, we investigate for a given triple (abc) of positive integers whether there exists a graph G such that \(\omega (G) = a\), \(\chi (G) = b\), and \(\chi _{\rho }(G) = c\). If so, we say that (abc) is realizable. It is proved that \(b=c\ge 3\) implies \(a=b\), and that triples \((2,k,k+1)\) and \((2,k,k+2)\) are not realizable as soon as \(k\ge 4\). Some of the obtained results are deduced from the bounds proved on the packing chromatic number of the Mycielskian. Moreover, a formula for the independence number of the Mycielskian is given. A lower bound on \(\chi _{\rho }(G)\) in terms of \(\Delta (G)\) and \(\alpha (G)\) is also proved.  相似文献   

7.
8.
9.
An Erratum has been published for this article in Journal of Graph Theory 48: 329–330, 2005 . Let M be a set of positive integers. The distance graph generated by M, denoted by G(Z, M), has the set Z of all integers as the vertex set, and edges ij whenever |i?j| ∈ M. We investigate the fractional chromatic number and the circular chromatic number for distance graphs, and discuss their close connections with some number theory problems. In particular, we determine the fractional chromatic number and the circular chromatic number for all distance graphs G(Z, M) with clique size at least |M|, except for one case of such graphs. For the exceptional case, a lower bound for the fractional chromatic number and an upper bound for the circular chromatic number are presented; these bounds are sharp enough to determine the chromatic number for such graphs. Our results confirm a conjecture of Rabinowitz and Proulx 22 on the density of integral sets with missing differences, and generalize some known results on the circular chromatic number of distance graphs and the parameter involved in the Wills' conjecture 26 (also known as the “lonely runner conjecture” 1 ). © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 129–146, 2004  相似文献   

10.
A generalization of the chromatic number of a graph is introduced such that the colors are integers modulo n, and the colors on adjacent vertices are required to be as far apart as possible.  相似文献   

11.
12.
A question of P. Erdös is solved by showing that certain graphs have chromatic number at most three. The proof proceeds by showing a conjecture of Erdös and Bollobás holds, namely, that under certain circumstances, a graph which contains an odd circuit must contain an odd circuit with diagonal.  相似文献   

13.
The distance graph G(D) has the set of integers as vertices and two vertices are adjacent in G(D) if their difference is contained in the set DZ. A conjecture of Zhu states that if the chromatic number of G(D) achieves its maximum value |D|+1 then the graph has a triangle. The conjecture is proven to be true if |D|?3. We prove that the chromatic number of a distance graph with D={a,b,c,d} is five only if either D={1,2,3,4k} or D={a,b,a+b,b-a}. This confirms a stronger version of Zhu's conjecture for |D|=4, namely, if the chromatic number achieves its maximum value then the graph contains K4.  相似文献   

14.
15.
《Journal of Graph Theory》2018,88(4):606-630
Motivated by an old conjecture of P. Erdős and V. Neumann‐Lara, our aim is to investigate digraphs with uncountable dichromatic number and orientations of undirected graphs with uncountable chromatic number. A graph has uncountable chromatic number if its vertices cannot be covered by countably many independent sets, and a digraph has uncountable dichromatic number if its vertices cannot be covered by countably many acyclic sets. We prove that, consistently, there are digraphs with uncountable dichromatic number and arbitrarily large digirth; this is in surprising contrast with the undirected case: any graph with uncountable chromatic number contains a 4‐cycle. Next, we prove that several well‐known graphs (uncountable complete graphs, certain comparability graphs, and shift graphs) admit orientations with uncountable dichromatic number in ZFC. However, we show that the statement “every graph G of size and chromatic number ω1 has an orientation D with uncountable dichromatic number” is independent of ZFC. We end the article with several open problems.  相似文献   

16.
17.
18.
P. Erdős and A. Hajnal asked the following question. Does there exist a constant ε>0 with the following property: If every subgraphH of a graphG can be made bipartite by the omission of at most ε|H| edges where |H| denotes the number of vertices ofH thenx(H) ≦ 3. The aim of this note is to give a negative answer to this question and consider the analogous problem for hypergraphs. The first was done also by L. Lovász who used a different construction.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号