首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fast and accurate fit program is presented for deconvolution of one-dimensional solid-state quadrupolar NMR spectra of powdered materials. Computational costs of the synthesis of theoretical spectra are reduced by the use of libraries containing simulated time/frequency domain data. These libraries are calculated once and with the use of second-party simulation software readily available in the NMR community, to ensure a maximum flexibility and accuracy with respect to experimental conditions. EASY-GOING deconvolution (EGdeconv) is equipped with evolutionary algorithms that provide robust many-parameter fitting and offers efficient parallellised computing. The program supports quantification of relative chemical site abundances and (dis)order in the solid-state by incorporation of (extended) Czjzek and order parameter models. To illustrate EGdeconv's current capabilities, we provide three case studies. Given the program's simple concept it allows a straightforward extension to include other NMR interactions. The program is available as is for 64-bit Linux operating systems.  相似文献   

2.
The potential of 33S NMR spectroscopy for biochemical investigations on taurine (2-aminoethanesulfonic acid) is explored. It is demonstrated that 33S NMR spectroscopy allows the selective and unequivocal identification of taurine in biological samples. 33S NMR spectra of homogenated and intact tissues are reported for the first time, together with the spectrum of a living mollusc. Emphasis is placed on the importance of choosing appropriate signal processing methods to improve the quality of the 33S NMR spectra of biological tissues.  相似文献   

3.
A method of calculating the singularities of two-dimensional correlation spectra of powders and determining the structural parameters with the help of a computer program is described. The opportunities of the method are illustrated on examples of experimental 2M exchange 13 C NMR spectra of dimethylsulfone, 2M exchange 2 H NMR spectrum of hexamethylbenzene, and model 2M exchange nutational NQR spectrum for spin I = 3/2. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 72–75, August, 2005.  相似文献   

4.
《光谱学快报》2013,46(6):587-605
Abstract

A procedure is presented that utilizes 1H NMR for prediction of the skeleton of iridoids. A new program was developed, named H1MACH, that presents a database with 800 data points from the 1H NMR spectra of iridoids. This program was widely tested for the prediction of the skeleton of 40 compounds and compared with other programs in the expert system SISTEMAT. The results obtained show that H1MACH is very useful for the prediction of the skeleton of iridoids, especially for the iridane skeleton.  相似文献   

5.
The1H-NMR spectra of 3-methyl-3-cyano-cyclopropene and19F-NMR spectra of bis-trifluoromethyl-mercury have been measured in nematic liquid crystal EBBA and in mixture of EBBA+M MBBA, respectively. The novel program systemWIN-DAISY was used for automated analysis and simulation of NMR spectra, and optimised parameters for dipolar coupling constants extracted.  相似文献   

6.
凌宏胜  田佳欣  周淑娜  魏达秀 《物理学报》2015,64(17):170301-170301
量子傅里叶变换是量子计算中一种重要的量子逻辑门. 任意量子位的傅里叶变换可以分解为一系列普适的单比特量子逻辑门和两比特量子逻辑门, 这种分解方式使得傅里叶变换的实验实现简单直观, 但所用的实验时间显然不是最短的. 本文利用优化控制和数值计算方法对Ising耦合体系中多量子位傅里叶变换的实验时间进行优化, 优化后的实现方法明显短于传统方法. 优化方法的核磁共振实验实现验证了其有效性.  相似文献   

7.
A new approach to the sequential resonance assignment of protein 1H NMR spectra based on a computer program is presented. Two main underlying concepts were used in the design of this program. First, it considers at any time all possible assignments that are consistent with the currently available data. If new information is added then assignments that have become inconsistent are eliminated. Second, the process of the assignment is split into formal steps that follow strictly from the available data and steps that involve the interpretation of ambiguous NMR data. The first kind of step is safe in the sense that it never leads to false assignments provided that the input does not contain any error; these steps are executed automatically by the program when the input files are read and whenever new data have been entered interactively. The second kind of step is left to the user: An interactive dialog provides detailed information on the current situation of the assignment and indicates what kind of new data would be most promising for further assignment. The user then provides new data to the program and restarts the automatic part which will attempt to draw logical conclusions from the joint use of the new data and the earlier available information and will eliminate assignments that have become inconsistent. Results of test problems using simulated NMR data for proteins consisting of up to 99 residues as well as the application of the program to obtain the complete assignment of α-bungarotoxin, a 74-residue snake neurotoxin, are reported.  相似文献   

8.
7Li NMR measurements have been performed to study milling effects on ionic diffusion in lithium cobalt oxide, LiCoO2 and piezoelectric compound, LiNbO3 prepared by mechanical milling method. The milling process gives quite different effects on NMR spectra of these compounds. Both 7Li MAS and static NMR spectra of the milled LiCoO2 show the line broadening with increasing milling time. 59Co static spectra also show specific changes in the line shape with increasing milling time. These results would be attributed to the change in an electronic state of Co 3d orbitals because of charge compensation associated with oxygen vacancies and/or defects. 7Li static NMR spectrum of milled LiNbO3 shows complicated line shape with increasing milling time. It is explained by superposition of two spectra arising from mobile Li+ ions and non-mobile ones settled on the fixed site. It is shown that the ratio of mobile Li+ ions increases up to a maximum of 9.4% with increasing milling time. Milling effects on the Li+ ionic diffusion in LiCoO2 and LiNbO3 are discussed in connection with changes in local structure.  相似文献   

9.
Unique combination of ionic conductivity and anisotropic physical properties in ionic liquid crystals leads to new dynamic properties exploited in modern technological applications. Structural and dynamics information at atomic level for molecules and ions in mesophases can be obtained by nuclear magnetic resonance (NMR) spectroscopy through the measurements of dipole–dipole spin couplings. While 13C–1H and 15N–1H dipolar NMR spectra can be routinely acquired in samples with natural isotopic abundance, recording 15N–13C dipolar NMR spectra is challenging because of the unfavourable combination of two rare isotopes. In the present study, an approach to measure 15N–13C dipole-dipole NMR spectra in static liquid crystalline samples with natural abundance is introduced. We demonstrate that well-resolved spectra can be recorded within 10 h of experimental time using a conventional NMR probe and a moderately strong magnetic field. The technique is applied to a thermotropic smectic mesophase formed by an ionic liquid with imidazolium-based organic cation.  相似文献   

10.
Hg-oxide ceramic high temperature superconductors were studied by199Hg and63,65Cu NMR spectroscopy. Room temperature spectra, spin-spin and spin-lattice relaxation times of samples with different superconducting transition temperatures are presented. A spin-lattice relaxation time ofT 1=35 msec and a spin-spin relaxation time ofT 2=1.6 msec were found for the199Hg NMR. All samples exhibit similar characteristic powder spectra caused by an axially symmetric199Hg spin interaction. The isotropic value and the anisotropy of the tensor relative to solid HgCl2 as a standard substance is estimated. Furthermore, results of63,65Cu NMR measurements at a temperature of 4.2 K which exhibit a typical powder line shape (forI=3/2) are presented.  相似文献   

11.
A five-channel (1H, 19F, 31P, 27Al, 13C) 2.5 mm magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is used in combination with three separate receivers for the parallel acquisitions of one (1D) and two-dimensional (2D) NMR spectra in model fluorinated aluminophosphate and porous Al-based metal-organic framework (MOF). Possible combinations to record simultaneously spectra using this set-up are presented, including (i) parallel acquisitions of quantitative 1D NMR spectra of solids containing nuclei with contrasted T1 relaxation rates and (ii) parallel acquisitions of 2D heteronuclear NMR spectra. In solids containing numerous different NMR-accessible nuclei, the number of NMR experiments that have to be acquired to get accurate structural information is high. The strategy we present here, i.e. the multiplication of both the number of irradiation channels in the probe and the number of parallel receivers, offers one possibility to optimize this measurement time.  相似文献   

12.
The influence of lithium, sodium, potassium, rubidium, and cesium on the electronic system of the 4‐nitrobenzoic acid molecule was studied. The vibrational (FT‐IR, FT‐Raman) and NMR (1H and 13C) spectra for 4‐nitrobenzoic acid salts of alkali metals were recorded. The assignment of vibrational spectra was done. Characteristic shifts of band wavenumbers and change in band intensities along the metal series were observed. Good correlation between the wavenumbers of the vibrational bands in the IR and Raman spectra for 4‐nitrobenzoates and ionic potential, electronegativity, atomic mass, and affinity of metals were found. The chemical shifts of protons and carbons (1H, 13C NMR) in the series of studied alkali metal 4‐nitrobenzoates were observed too. Optimized geometrical structures of studied compounds were calculated by HF, B3PW91, B3LYP methods using 6‐311++G** basis set. The theoretical IR, Raman, and NMR spectra were obtained. The theoretical vibrational spectra were interpreted by means of potential energy distributions (PEDs) using VEDA 3 program. The calculated parameters were compared to experimental characteristic of studied compounds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Simple procedures are described for recording complementary in-phase and antiphaseJ-coupled NMR spectra. The sum and difference of these spectra contain only the upfield and the downfield components of a doublet, making it possible to measure theJsplitting directly from these combinations without an increase in resonance overlap relative to the decoupled spectrum. The approach is demonstrated for measurement of1JNHsplittings and2JHNC′splittings in oriented and isotropic ubiquitin. Dipolar couplings obtained from differences in the splittings measured in the oriented and isotropic phases are in excellent agreement with dipolar couplings obtained from direct measurement of the splitting or from a conventional E.COSY-type measurement.  相似文献   

14.
The measurement and analysis of broad nuclear magnetic resonance (NMR) spectra of quasicrystals require experimental methods and theoretical interpretations different from NMR investigations of regular periodic crystals. Frequency- and field-sweep methods for recording quasicrystalline NMR spectra are described and compared with the measurement of27Al NMR spectra of icosahedral AlPdMn and decagonal AlNiCo quasicrystals. The nuclear spin interactions that determine the NMR line shape are the same for both types of the above Al-based quasicrystals, where the electric quadrupolar interaction with the broad distribution of its electric field gradient parameters predominantly determines the shape of the broad satellite “background” intensity. The essential observations are an almost isotropic27Al NMR spectrum of the icosahedral quasicrystals and a strong angular dependence of the spectrum of decagonal quasicrystals.  相似文献   

15.
NMR studies of 125Te in the topological insulator bismuth telluride Bi2Te3 in a wide temperature range from room temperature to 12.5 K are performed. The pulsed NMR spectrometer Bruker Avance 400 is applied. The NMR spectra are obtained for the powder from Bi2Te3 single crystal and monocrystalline plates with the orientations c || B and cB. At room temperature, the spectra consist of two lines related to two nonequivalent positions of tellurium nuclei Te1 and Te2. The parameters of the NMR frequency shift tensor are found from the powder spectrum. The temperature dependences of the spectra for the powder and plates with the orientation c ⊥ B agree with each other. The line shift with decreasing temperature is explained by the reduction of the Knight shift. The thermal activation energy of charge carriers is estimated. The spectra for the plates with the orientation c || B demonstrate peculiar behavior below 91 K. The spin-lattice relaxation time for the powder and monocrystalline plates with both orientations at room temperature is measured.  相似文献   

16.
An efficient theoretical formalism and advanced experimental methods are presented for studying the effects of anisotropic molecular motion and relaxation on solid-state central transition NMR spectra of half-integer quadrupole nuclei. The theoretical formalism is based on density operator algebra and involves the stochastic Liouville–von Neumann equation. In this approach the nuclear spin interactions are represented by the Hamiltonian while the motion is described by a discrete stochastic operator. The nuclear spin interactions fluctuate randomly in the presence of molecular motion. These fluctuations may stimulate the relaxation of the system and are represented by a discrete relaxation operator. This is derived from second-order perturbation theory and involves the spectral densities of the system. Although the relaxation operator is valid only for small time intervals it may be used recursively to obtain the density operator at any time. The spectral densities are allowed to be explicitly time dependent making the approach valid for all motional regimes. The formalism has been applied to simulate partially relaxed central transition 17O NMR spectra of representative model systems. The results have revealed that partially relaxed central transition lineshapes are defined not only by the nuclear spin interactions but also by anisotropic motion and relaxation. This has formed the basis for the development of central transition spin-echo and inversion-recovery NMR experiments for investigating molecular motion in solids. As an example we have acquired central transition spin-echo and inversion-recovery 17O NMR spectra of polycrystalline cristobalite (SiO2) at temperatures both below and above the α–β phase transition. It is found that the oxygen atoms exhibit slow motion in α-cristobalite. This motion has no significant effects on the fully relaxed lineshapes but may be monitored by studying the partially relaxed spectra. The α–β phase transition is characterized by structural and motional changes involving a slight increase in the Si–O–Si bond angle and a substantial increase in the mobility of the oxygen atoms. The increase in the Si–O–Si angle is supported by the results of 17O and 29Si NMR spectroscopy. The oxygen motion is shown to be orders of magnitude faster in β-cristobalite resulting in much faster relaxation and characteristic lineshapes. The measured oscillation frequencies are consistent with the rigid unit mode model. This shows that solid-state NMR and lattice dynamics simulations agree and may be used in combination to provide more detailed models of solid materials.  相似文献   

17.
Exact numerical simulations of NMR experiments are often required for the development of new techniques and for the extraction of structural and dynamic information from the spectra. Simulations of solid-state magic angle spinning (MAS) experiments can be particularly demanding both computationally and in terms of the programming required to carry them out, even if special simulation software is used. We recently developed a number of approaches that dramatically improve the efficiency and allow a high degree of automation of these computations. In the present paper, we describe SPINEVOLUTION, a highly optimized computer program that implements the new methodology. The algorithms used in the program will be described separately. Although particularly efficient for the simulation of experiments with complex pulse sequences and multi-spin systems in solids, SPINEVOLUTION is a versatile and easy to use tool for the simulation and optimization of virtually any NMR experiment. The performance of SPINEVOLUTION was compared with that of another recently developed NMR simulation package, SIMPSON. Benchmarked on a series of examples, SPINEVOLUTION was consistently found to be orders of magnitude faster. At the time of publication, the program is available gratis for non-commercial use.  相似文献   

18.
2H and 14N solid-state NMR spectra of polycrystalline choline chloride, bromide, and iodide indicate that 180° cation flipping motion occurs in all three salts. From the temperature dependence of these spectra, the activation energy for this motion is determined to be 5.8 ± I kcal/mol in the iodide salt and 11 ± 1.5 kcal/mol in the chloride salt. In the bromide salt the reorientation rate is too rapid to be determined from the NMR lineshape, but the temperature dependence of the 2H quadrupole coupling parameters is indicative of a second-order phase transition at approximately 273 K. The spectral distortions in the 14N NMR spectra of the chloride and iodide salts are adequately explained using the motional model derived from the 2H NMR results, while the 14N spectra of the bromide salt show no motional effects. The axis of reorientation which is inferred from these data appears to be consistent with that indicated in a previous X-ray crystallographic study.  相似文献   

19.
The dipolar interactions between the protons and the central 13C nucleus of a 13CH3 group are used to study rotational tunnelling and incoherent dynamics of such groups in molecular solids. Single-crystal 13C NMR spectra are derived for arbitrary values of the tunnel frequency νt. Similarities to ESR and 2H NMR are pointed out. The method is applied to three different materials. In the hydroquinone/acetonitrile clathrate, the unique features in the 13C NMR spectra which arise from tunnelling with a tunnel frequency that is much larger than the dipolar coupling between the methyl protons and the 13C nucleus are demonstrated, and the effects of incoherent dynamics are studied. The broadening of the 13C resonances is related to the width of the quasi-elastic line in neutron scattering. Selective magnetization transfer experiments for studying slow incoherent dynamics are proposed. For the strongly hindered methyl groups of L-alanine, an upper limit for νt is derived from the 13C NMR spectrum. In aspirin? (acetylsalicylic acid), incoherent reorientations dominate the spectra down to the lowest temperatures studied; their rate apparently increases with decreasing temperature below 25 K.  相似文献   

20.
In this contribution, we present the application potentiality of biaxial Q-shearing of 27Al 3QMAS NMR spectra in the analysis of structural defects of aluminium units in aluminosilicates. This study demonstrates that the combination of various shearing transformations of the recorded 27Al 3QMAS NMR spectra enables an understanding of the broadening processes of the correlation signals of disordered framework aluminosilicates, for which a wide distribution of 27Al MAS NMR chemical shifts and quadrupolar parameters (i.e., second-order quadrupolar splitting and quadrupole-induced chemical shifts) can be expected. By combining the suitably selected shearing transformation procedures, the mechanisms of the formation of local defects in aluminosilicate frameworks, including Al/Si substitution effects in the next-nearest neighbouring T-sites, variations in bond angles, and/or variations in the physicochemical nature of charge-balancing counter-ions, can be identified. The proposed procedure has been extensively tested on a range of model aluminosilicate materials (kyanite, γ-alumina, metakaolin, analcime, chabazite, natrolite, phillipsite, mordenite, zeolite A, and zeolite Y).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号