首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A multiple-scale perturbation analysis for slowly varying weakly nonlinear dispersive waves predicts that the wave number breaks or folds and becomes triple-valued. This theory has some difficulties, since the wave amplitude becomes infinite. Energy first focuses along a cusped caustic (an envelope of the rays or characteristics). The method of matched asymptotic expansions shows that a thin focusing region with relatively large wave amplitudes, valid near the cusped caustic, is described by the nonlinear Schrödinger equation (NSE). Solutions of the NSE are obtained from an asymptotic expansion of an equivalent linear singular integral equation related to a Riemann-Hilbert problem. In this way connection formulas before and after focusing are derived. We show that a slowly varying nearly monochromatic wave train evolves into a triple-phased slowly varying similarity solution of the NSE. Three weakly nonlinear waves are simultaneously superimposed after focusing, giving meaning to a triple-valued wave number. Nonlinear phase shifts are obtained which reduce to the linear phase shifts previously described by the asymptotic expansion of a Pearcey integral.  相似文献   

2.
The problem of the rapid intense cylindrically or spherically symmetrical compression of an ideal (non-viscous and non-heat-conducting) perfect gas with different adiabatic exponents is considered. We mean by rapid and intense a compression in a time much less than the time taken for the sound wave to propagate through the uncompressed target up to temperatures and densities as high as desired. It is found that the solution previously obtained with a focused non-self-similar compression wave at the point where the shock wave is reflected from the axis or centre of symmetry (henceforth the centre of symmetry) holds for adiabatic exponents not exceeding 1.9092 and 1.8698 respectively in the cylindrical and spherical cases. It was not possible to construct a complete solution with focusing at the centre of symmetry for gases with higher adiabatic exponents. On the other hand, one can focus the compression waves into a cylinder or sphere of as small, but finite, radius as desired at the instant of arrival on them, for example, of a special characteristic or reflected shock wave of the Guderley problem. It is shown that for high degrees of compression, the time dependences of the coordinates of the pistons which produce such focusing, and of the gas density on them are close to power laws.  相似文献   

3.
ON INTERACTION OF SHOCK AND SOUND WAVE (I)   总被引:1,自引:1,他引:0  
This paper studies the interaction of shock and gradient wave (sound wave) of solutions to the system of inviscid isentropic gas dynamics as a model for the corresponding problems for nonlinear hyperbolic systems. The problem can be reduced to a boundary value problem in a wedged dormain, By using the method of constructing asymptotic solutions and Newton‘siteration process it is proved that if a weak shock hits a gradient wave, then the grandient wave will split into two gradient waves, while the shock continuses propagating. In this paper the author reduces the problem to a standard form and constructs asymptotic solution of the problem. The existence of the genuine solution will he given in the following paper.  相似文献   

4.
1.IntroductionRecentlythestudyofdiscontinuoussolutionforthesystemofconservationlawsinhigherdimensionalspacehasbeenconsiderablydeveloped.In[1,W12]thelocalekistenceof8olutionforsuclisystemwithdiscontinuityinvolvingsingleshock,rarefactionwaveorsoundwav(gradientwave)hasbeenestablished.In[2Jand[14]theproblemsoninteractionoftwoshocksorinteractionofweaksingularitiesarealsoconsidered.Itisnaturaltoaskwhatabouttheresultwhenashockisinteractedbyawavewitliweakersillgularities,particularly,forthenbynsystem…  相似文献   

5.
The problem of cylindrical acoustic wave diffraction from an absorbing finite barrier in a moving fluid has been investigated in an improved form. The diffracted field in the far zone has already been discussed in [1], but due to some mathematical complications, the absorbing parameter was ignored in that study. In the present analysis, the absorbing parameter is taken into account up to order one and presented in a better form solution. Moreover, the solution obtained in this analysis can be used to recover the results for the case of semi-infinite barrier [2] by taking an appropriate limit l → ∞. The results for still fluid can also be gathered by taking the value of Mach number to be zero. The integral transforms, Wiener-Hopf techniques and asymptotic expansions are used to acquire the diffracted field in the far zone. Finally, the solution is well supported by the graphical results showing the effects of various physical parameters on the separated field.  相似文献   

6.
It is shown, how even particular traveling wave asymptotic solution may describe the defects on the shock wave profile caused by the dispersion features of the numerical scheme of the coupled nonlinear gas dynamics equations. For this purpose the coupled nonlinear partial differential equations or the so-called differential approximation of the scheme, are obtained, and a simplification of the method of differential approximation is suggested to obtain the desired asymptotic solution. The solution is used to study the roles of artificial viscosity and the refinement of the mesh for the suppression of the dispersion of the scheme.  相似文献   

7.
讨论了一类具有大Reynolds数且弱频散性的KdV-Burgers方程,在数学上表示为一类奇摄动KdV-Burgers方程.KdV-Burgers方程中含有的非线性项与频散项互补作用形成稳定向前传播的孤立子.通过数学分析,描述了孤立子的传播途径和传播速度等物理量的发展变化规律.通过奇摄动展开方法,构造了该问题的渐近解...  相似文献   

8.
9.
This paper studies the problem on the steady supersonic flow at the constant speed past an almost straight wedge with a piecewise smooth boundary. It is well known that if each vertex angle of the straight wedge is less than an extreme angle determined by the shock polar, the shock wave is attached to the tip of the wedge and constant states on both side of the shock are supersonic. This paper is devoted to generalizing this result. Under the hypotheses that each vertex angle is less than the extreme angle and the total variation of tangent angle along each edge is sufficiently small, a sequence of approximate solutions constructed by a modified Glimm scheme is proved to be convergent to a global weak solution of the steady problem. A sequence of the corresponding approximate leading shock fronts issuing from the tip is shown to be convergent to the leading shock front of the obtained solution. The regularity of the leading shock front is established and the asymptotic behaviour of the obtained solution at infinity is also studied.  相似文献   

10.
In this paper, we consider the problem with a gas–gas free boundary for the one dimensional isentropic compressible Navier–Stokes–Korteweg system. For shock wave, asymptotic profile of the problem is shown to be a shifted viscous shock profile, which is suitably away from the boundary, and prove that if the initial data around the shifted viscous shock profile and its strength are sufficiently small, then the problem has a unique global strong solution, which tends to the shifted viscous shock profile as time goes to infinity. Also, we show the asymptotic stability toward rarefaction wave without the smallness on the strength if the initial data around the rarefaction wave are sufficiently small.  相似文献   

11.
In this paper, we establish the global existence and stability of a steady conic shock wave for the symmetrically perturbed supersonic flow past an infinitely long conic body as long as the vertex angle is less than a critical value. The flow is assumed to be polytropic, isentropic and described by a steady potential equation. Based on the delicate asymptotic expansion of the background solution, one can verify that the boundary conditions on the shock and the conic surface satisfy the “dissipative” property. From this property, by use of the reflected characteristics method and the special form of the shock equation, we show that the conic shock attached at the vertex of the cone exists globally in the whole space when the speed of the supersonic coming flow is appropriately large. On the other hand, we remove the smallness restriction on the sharp vertex angle in order to establish the global existence of a shock or a global weak solution, moreover, our proof approach is different from that in [Shuxing Chen, Zhouping Xin, Huicheng Yin, Global shock wave for the supersonic flow past a perturbed cone, Comm. Math. Phys. 228 (2002) 47-84] and [Zhouping Xin, Huicheng Yin, Global multidimensional shock wave for the steady supersonic flow past a three-dimensional curved cone, Anal. Appl. 4 (2) (2006) 101-132].  相似文献   

12.
The theory of high-frequency waves has been used to calculate first and second-order asymptotic solutions for the propagation of non-linear waves in a cylindrical symmetric flow of an electron plasma. The behaviour of acceleration waves and weak shock waves has been analysed through these solutions and Whitham's rule for a weak shock wave on any wavelet has been confirmed through the first-order solution. The appearance of a weak shock wave on any wavelet has been determined and its strength, the location, and the speed of propagation have been found from the asymptotic solution presented in this paper. © 1997 by B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

13.
All possible continuum (hydrodynamic) models in the case of two-dimensional problems of supersonic and hypersonic flows around blunt bodies in the two-layer model (a viscous shock layer and shock-wave structure) over the whole range of Reynolds numbers, Re, from low values (free molecular and transitional flow conditions) up to high values (flow conditions with a thin leading shock wave, a boundary layer and an external inviscid flow in the shock layer) are obtained from the Navier-Stokes equations using an asymptotic analysis. In the case of low Reynolds numbers, the shock layer is considered but the structure of the shock wave is ignored. Together with the well-known models (a boundary layer, a viscous shock layer, a thin viscous shock layer, parabolized Navier-Stokes equations (the single-layer model) for high, moderate and low Re numbers, respectively), a new hydrodynamic model, which follows from the Navier-Stokes equations and reduces to the solution of the simplified (“local”) Stokes equations in a shock layer with vanishing inertial and pressure forces and boundary conditions on the unspecified free boundary (the shock wave) is found at Reynolds numbers, and a density ratio, k, up to and immediately after the leading shock wave, which tend to zero subject to the condition that (k/Re)1/2 → 0. Unlike in all the models which have been mentioned above, the solution of the problem of the flow around a body in this model gives the free molecular limit for the coefficients of friction, heat transfer and pressure. In particular, the Newtonian limit for the drag is thereby rigorously obtained from the Navier-Stokes equations. At the same time, the Knudsen number, which is governed by the thickness of the shock layer, which vanishes in this model, tends to zero, that is, the conditions for a continuum treatment are satisfied. The structure of the shock wave can be determined both using continuum as well as kinetic models after obtaining the solution in the viscous shock layer for the weak physicochemical processes in the shock wave structure itself. Otherwise, the problem of the shock wave structure and the equations of the viscous shock layer must be jointly solved. The equations for all the continuum models are written in Dorodnitsyn--Lees boundary layer variables, which enables one, prior to solving the problem, to obtain an approximate estimate of second-order effects in boundary-layer theory as a function of Re and the parameter k and to represent all the aerodynamic and thermal characteristic; in the form of a single dependence on Re over the whole range of its variation from zero to infinity.

An efficient numerical method of global iterations, previously developed for solving viscous shock-layer equations, can be used to solve problems of supersonic and hypersonic flows around the windward side of blunt bodies using a single hydrodynamic model of a viscous shock layer for all Re numbers, subject to the condition that the limit (k/Re)1/2 → 0 is satisfied in the case of small Re numbers. An aerodynamic and thermal calculation using different hydrodynamic models, corresponding to different ranges of variation Re (different types of flow) can thereby, in fact, be replaced by a single calculation using one model for the whole of the trajectory for the descent (entry) of space vehicles and natural cosmic bodies (meteoroids) into the atmosphere.  相似文献   


14.
The self-similar one-dimensional propagation of a strong shock wave in a medium with an exponentially decreasing density is studied. The flow behind the shock is assumed to be spatially isothermal rather than adiabatic to simulate the conditions of large radiative transfer behind the shock. The solution in closed form is obtained. An analytic expression for the similarity exponent has also been obtained.  相似文献   

15.
The problem of the rapid cylindrically and spherically symmetric strong compression of a perfect (non-viscous and non-heat-conducting) gas is solved. The term “rapid” denotes that the compression time is much less than the run time of a sound wave across the initial cylindrical or spherical volume, while the term “strong” in this case means the simultaneous attainment of as large a density and temperature as desired. By definition, rapid compression must begin in a strong shock wave, which propagates to the axis or centre of symmetry. When the shock wave approaches the centre of symmetry this flow is described by the self-similar Guderley equation with an unbounded rise in temperature, pressure and velocity and a finite increase in the density at the centre of symmetry both behind the arriving and behind the reflected shock waves. To obtain as high an increase in the density as desired one must add on a centred compression wave with focus at the centre of symmetry to the overtaking shock wave at the instant it arrives at the centre of symmetry C-characteristic. Outside a small neighbourhood of the focus one can calculate, by the method of characteristics, the centred wave and the trajectory of the piston which produces it. As for any centred wave, this calculation must be carried out from the centre of symmetry. Since some of the parameters at the focus (certainly the pressure, temperature and velocity of the gas) are unbounded, it is necessary to preface the calculation by the method of characteristics by constructing an analytic solution which holds in a small neighbourhood of the centre of symmetry. Below, after constructing the required solution, the centred waves corresponding to it and the trajectories of the piston producing them are calculated.  相似文献   

16.
The limits of applicability of continuum flow models in the problem of the hypersonic rarefied gas flow over blunt bodies are determined by an asymptotic analysis of the Navier–Stokes equations, the numerical solution of the viscous shock layer equations and the numerical and asymptotic solution of the thin viscous shock layer equations for low Reynolds numbers. It is shown that the thin viscous shock layer model gives correct values of the skin friction coefficient and the heat transfer coefficient in the transitional to free-molecule flow regime. The asymptotic solutions, the numerical solutions obtained within the framework of different continuum models, and the results of a calculation by Direct Simulation Monte Carlo method are compared.  相似文献   

17.
An asymptotic method is proposed for solving transient dynamic contact problems of the theory of elasticity for a thin strip. The solution of problems by means of the integral Laplace transformation (with respect to time) and the Fourier transformation (with respect to the longitudinal coordinate) reduces to an integral equation in the form of a convolution of the first kind in the unknown Laplace transform of contact stresses under the punch. The zeroth term of the asymptotic form of the solution of the integral equation for large values of the Laplace parameter is constructed in the form of the superposition of solutions of the corresponding Wiener-Hopf integral equations minus the solution of the corresponding integral equation on the entire axis. In solving the Wiener-Hopf integral equations, the symbols of the kernel of the integral equation in the complex plane is presented in special form — in the form of uniform expansion in terms of exponential functions. The latter enables integral equations of the second kind to be obtained for determining the Laplace-Fourier transform of the required contact stresses, which, in turn, is effectively solved by the method of successive approximations. After Laplace inversion of the zeroth term of the asymptotic form of the solution of the integral equations, the asymptotic solution of the transient dynamic contact problem is determined. By way of example, the asymptotic solution of the problem of the penetration of a plane punch into an elastic strip lying without friction on a rigid base is given. Formulae are derived for the active elastic resistance force on the punch of a medium preventing the penetration of the punch, and the law of penetration of the punch into the elastic strip is obtained, taking into account the elastic stress wave reflected from the strip face opposite the punch and passing underneath it.  相似文献   

18.
The Love waves concentrated near the surface of an anisotropic elastic body are studied. A uniform asymptotics of the wave field is constructed with the use of the nonstationary caustic expansion (Yu. A. Kravtsov's ansatz) in the form of a space-time ray series. Using three types of waves, which propagate along any direction in an elastic medium, as a vector basis, sufficient conditions for the existence of a nonzero asymptotic solution of the problem under study are obtained. The procedure for constructing asymptotic series is illustrated with the model of a transversely isotropic medium. Bibliography: 9 titles.  相似文献   

19.
We consider the large time asymptotic behavior of the global solutions to the initial value problem for the nonlinear damped wave equation with slowly decaying initial data. When the initial data decay fast enough, it is known that the solution to this problem converges to the self-similar solution to the Burgers equation called a nonlinear diffusion wave, and its optimal asymptotic rate is obtained. In this paper, we focus on the case that the initial data decay more slowly than previous works and derive the corresponding asymptotic profile. Moreover, we investigate how the change of the decay rate of the initial values affect its asymptotic rate.  相似文献   

20.
This is the second in a two-part series of articles in which we analyze a system similar in structure to the well-known Zakharov equations from weak plasma turbulence theory, but with a nonlinear conservation equation allowing finite time shock formation. In this article we analyze the incompressible limit in which the shock speed is large compared to the underlying group velocity of the dispersive wave (a situation typically encountered in applications). After presenting some exact solutions of the full system, a multiscale perturbation method is used to resolve several basic wave interactions. The analysis breaks down into two categories: the nonlinear limit and the linear limit, corresponding to the form of the equations when the group velocity to shock speed ratio, denoted by ε, is zero. The former case is an integrable limit in which the model reduces to the cubic nonlinear Schrödinger equation governing the dispersive wave envelope. We focus on the interaction of a “fast” shock wave and a single hump soliton. In the latter case, the ε=0 problem reduces to the linear Schrödinger equation, and the focus is on a fast shock interacting with a dispersive wave whose amplitude is cusped and exponentially decaying. To motivate the time scales and structure of the shock-dispersive wave interactions at lowest orders, we first analyze a simpler system of ordinary differential equations structurally similar to the original system. Then we return to the fully coupled partial differential equations and develop a multiscale asymptotic method to derive the effective leading-order shock equations and the leading-order modulation equations governing the phase and amplitude of the dispersive wave envelope. The leading-order interaction equations admit a fairly complete analysis based on characteristic methods. Conditions are derived in which: (a) the shock passes through the soliton, (b) the shock is completely blocked by the soliton, or (c) the shock reverses direction. In the linear limit, a phenomenon is described in which the dispersive wave induces the formation of a second, transient shock front in the rapidly moving hyperbolic wave. In all cases, we can characterize the long-time dynamics of the shock. The influence of the shock on the dispersive wave is manifested, to leading order, in the generalized frequency of the dispersive wave: the fast-time part of the frequency is the shock wave itself. Hence, the frequency undergoes a sudden jump across the shock layer.In the last section, a sequence of numerical experiments depicting some of the interesting interactions predicted by the analysis is performed on the leading-order shock equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号