共查询到20条相似文献,搜索用时 9 毫秒
1.
针对视觉跟踪中运动目标的大小也随之改变这一问题,提出一种基于变分辨率的自适应窗口目标跟踪方法。在最大后验概率视觉跟踪算法基础上,分析了运动目标窗口内外框上的后验概率贡献指标,建立了自适应窗口调整目标尺度的数学模型。当运动目标尺寸变化时,其分辨率也相应变化,为了保证跟踪的实时性和效率,采用变分辨率的特征统计采样方法。在对运动目标实现自适应窗口的跟踪时,特征统计的分辨率也随之改变,对尺寸越大的运动目标尺度赋予更低的分辨率,从而实现基于变分辨率的自适应窗口目标跟踪。 相似文献
2.
3.
为提升TLD目标跟踪算法的每帧处理速度,以达到在更高分辨率视频中跟踪目标的实时性要求,在TLD算法框架的基础上,提出了一种基于自适应尺度检测学习的目标跟踪算法(AS-TLD)。当跟踪目标成功时,选取当前帧跟踪到的目标尺度及几个相邻的尺度作为下帧检测目标时滑动窗口尺度的选取范围;而当跟踪失败时,则选取在TLD算法初始化阶段,根据跟踪目标及视频图像大小选定的尺度来保障长时间跟踪目标,从而有效减少了平均每帧扫描的窗口数量。实验结果表明,该方法不仅有效地降低了检测模块的检测时间,显著提高了整体算法速度,而且通过动态选取尺度,在一定程度使得TLD各个模块更加协调,跟踪精确度得到提升。 相似文献
4.
随着现在的社会发展以及经济进步,我国的科学技术方面发展迅速,特别是在技术监控方面更是突飞猛进。为了更好的对目标遮挡影响进行降低,我国在这方面主要依据自适应的技术发展背景下提出目标跟踪计算法,用来完善我国的监督控制技术。这种计算方式第一是根据对观察目标的基本外观形态进行的鉴定与跟踪,将其自身的运动量进行平均计算;其次是根据时空的运行方向与特征进行跟踪目标的计算,建立比较完善整体的运行模型,再根据这个运动模型以及整体的状态对监督目标进行检测与控制,这期间就会形成一种遮挡掩膜。对于掩膜是一种将程序数据等绘制成光刻板,在程序使用期间非常可靠,并且制造成本比较低,使用方便;最后是在不同的使用情况下将不同参数进行收集,自动的适应运动模型的运行。针对这种计算方式的实验主要是利用两种在国际上经常使用的CAVIAR、York数据进行测试,并且根据这两种数据对测试的精准度与多重目标跟踪等进行评定,检测跟踪的整体性能。通过多方面的研究表明这种方式的跟踪的性能非常好,并且还能很好的将跟踪目标的鲁棒性进行遮挡。 相似文献
5.
6.
7.
8.
9.
基于差分交集的视频对象分割与跟踪算法 总被引:3,自引:0,他引:3
视频对象分割算法的性能好坏将直接影响MPEG 4编码产品的质量。连续两次差分后自适应处理,对差分图像取交集获得运动对象的边界,形态学处理后最终获取运动目标。基于改进的Hausdorff距离度量法对后续帧中视频对象进行跟踪。实验结果证明,该方法能够从背景不变的图像序列中较好的提取出运动对象,具有较强的鲁棒性。 相似文献
10.
为解决单一特征目标跟踪鲁棒性较差的问题,提出一种基于颜色和空间信息的多特征融合目标跟踪算法。采用一种自适应划分颜色区间的方法提取目标颜色特征,利用空间直方图提取目标颜色的空间分布信息。在粒子滤波框架下将自适应颜色直方图和空间直方图相结合,在特征融合中引入特征不确定性度量方法,自适应调整不同特征对跟踪结果的贡献,提高算法的鲁棒性。仿真实验结果表明,该跟踪算法平均位置最小误差值仅6.967 像素,而单一特征跟踪算法以及传统融合算法的跟踪误差达192.576 像素和199.464像素。说明本文算法在跟踪准确性上优于单一特征跟踪算法及传统融合算法,具有更好的跟踪精度和更高的鲁棒性。 相似文献
11.
针对复杂环境条件下的视觉跟踪问题,提出一种基于自适应非参数统计模型的彩色目标跟踪算法。利用目标和背景之间的强度差别,基于自适应核密度估计模型对运动目标进行了非参数统计建模。为了实现具有较大范围运动目标的跟踪,在充分考虑目标和背景之间的相关性前提下,采用目标特征统计的背景加权直方图对搜索区域进行了扩大。为了提高对环境变化的适应能力,根据目标和环境的变化自适应更新目标特征分布模型。通过对实际图像序列的实验,结果表明该算法能够有效跟踪运动目标,并且平均迭代次数比传统方法减少了37.28%。 相似文献
12.
Online object tracking is a challenging problem as it entails learning an effective model to account for appearance change caused by intrinsic and extrinsic factors. In this paper, we propose a novel online object tracking with guided image filter for accurate and robust night fusion image tracking. Firstly, frame difference is applied to produce the coarse target, which helps to generate observation models. Under the restriction of these models and local source image, guided filter generates sufficient and accurate foreground target. Then accurate boundaries of the target can be extracted from detection results. Finally timely updating for observation models help to avoid tracking shift. Both qualitative and quantitative evaluations on challenging image sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-art methods. 相似文献
13.
14.
提出了一种新的自适应权值的立体匹配方法,在匹配中无需逐像素确定其支持窗口的尺寸。首先根据像素间的相似性和邻近性对匹配窗口内每一像素的支持权值进行调整,使与待匹配点位于同一区域的像素权值增大,然后在匹配的代价函数中引入视差平滑性约束项,从而获得最终视差。在Middlebury提供的标准图像上进行了测试。实验结果表明,该方法可以获得良好的视差图。 相似文献
15.
16.
To solve the problem that traditional object tracking method had disadvantage of too much time consumed by data process and object lost under complex background, a novel approach to object tracking based on the space spectrum and edge spectrum is proposed and verified experimentally. Analyzing precursor features and study the unity and complementary of space spectrum and edge spectrum, research the extraction technology of moving object based on space spectrum and edge spectrum in order to track and forecast information of the moving object in real time. Experiments show that the proposed approach overcomes the problems of data dependence and object occlusion and achieves good tracking results. 相似文献
17.
Due to the higher noise and less details in infrared images, general matching algorithms are prone to obtaining unsatisfying results. Combining the idea of salient object, we propose a novel infrared stereo matching algorithm which applies to unconstrained stereo rigs. Firstly, we present an epipolar rectification method introducing particle swarm optimization and K-nearest neighbor to deal with the problem of epipolar constraint. Then we make use of transition region to extract salient object in the rectified infrared image pairs. Finally, disparity map is generated by matching salient regions. Experiments show that our algorithm deals with the infrared stereo matching of unconstrained stereo rigs with better accuracy and higher speed. 相似文献
18.
目标跟踪与定位中的视觉标定算法研究 总被引:2,自引:1,他引:2
目标跟踪与定位中的一个重要步骤就是摄像机标定,其目的是估计摄像机的外部和内部参数。在严格的几何约束关系之上建立准确的数学模型,提出一种快速得到摄像机中心的方法,然后通过合理的求解次序获得其他摄像机参数,保证了标定参数的精度。利用计算出来的标定参数校正失真图像中的各个像素位置以重新得到像素间原来的空间关系,从而产生精确的不失真图像,并且利用摄像机标定参数对标定模板上的点进行位置计算后,再和实际位置比较进行检验。图像的校正效果实验以及精度验算的结果表明:提出的算法得到了准确可靠的标定参数,和其他算法相比有效提高了精度,能够满足运动跟踪时目标特征位置估计的精度要求。 相似文献
19.
The time complexity of the adaptive mean shift is related to the dimension of data and the number of iterations. The amount of computation will increase prohibitively with the increase of the data dimension. An approximate neighborhood queries method is presented for the computation of high dimensional data, in which, the locality-sensitive hashing (LSH) is used to reduce the computational complexity of the adaptive mean shift algorithm. The data-driven bandwidth selection for multivariate data is used in mean shift procedure, and an adaptive mean shift based on LSH with bandwidth estimation (LSH-PE-AMS) algorithm is proposed. Experimental results show that the proposed algorithm can reduce the complexity of the adaptive mean shift algorithm, and can produce a more accurate classification than the fixed bandwidth mean shift algorithm. 相似文献
20.
《中国物理 B》2020,(5)
Traditional compressed sensing algorithm is used to reconstruct images by iteratively optimizing a small number of measured values. The computation is complex and the reconstruction time is long. The deep learning-based compressed sensing algorithm can greatly shorten the reconstruction time, but the algorithm emphasis is placed on reconstructing the network part mostly. The random measurement matrix cannot measure the image features well, which leads the reconstructed image quality to be improved limitedly. Two kinds of networks are proposed for solving this problem. The first one is Recon Net's improved network IRecon Net, which replaces the traditional linear random measurement matrix with an adaptive nonlinear measurement network. The reconstruction quality and anti-noise performance are greatly improved.Because the measured values extracted by the measurement network also retain the characteristics of image spatial information, the image is reconstructed by bilinear interpolation algorithm(Bilinear) and dilate convolution. Therefore a second network USDCNN is proposed. On the BSD500 dataset, the sampling rates are 0.25, 0.10, 0.04, and 0.01, the average peak signal-noise ratio(PSNR) of USDCNN is 1.62 d B, 1.31 d B, 1.47 d B, and 1.95 d B higher than that of MSRNet. Experiments show the average reconstruction time of USDCNN is 0.2705 s, 0.3671 s, 0.3602 s, and 0.3929 s faster than that of Recon Net. Moreover, there is also a great advantage in anti-noise performance. 相似文献