首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Computational fluid dynamics is extensively used in the design methodology of medical devices. However, for such applications, the predictive capabilities of CFD codes are highly dependent upon geometry, which most of the time is extremely complex, and flow conditions. The study concerns a ventricular assist device (VAD) where the exit flow, generated through a diffuser, is of particular importance for blood damage predictions. The difficulty to predict the flow lies in the fact that the Reynolds number range includes the transition Reynolds number of the separated diffuser flow as well as the critical Reynolds number of pipe flows. In order to choose the appropriate CFD methodology in terms of flow hypothesis and turbulence model, an experimental setup of the diffuser was built to run PIV velocity measurements and to analyze the flow pattern with the influence of Reynolds number. The flow is described with mean and variance values of the in-plane velocity components and timeresolved results are used to visualize the development of unsteady phenomena introduced in the diffuser separated region. An optimal filter is also used to remove noise in measured velocity vector fields.  相似文献   

2.
A liquid jet plunging into a container of liquid often entrains a thin film of air with it, producing bubbles. This bubble production is detrimental to many industrial processes, such as filling a container with a molten glass or polymer, or in coating processes. Conversely, in making a foam, one uses this effect; hence it is important to control the rate of bubble production. Here, we measure the amount of air entrained by a viscous jet over a wide range of parameters and explain the phenomenon theoretically. Simple scaling arguments are shown to predict entrainment rates over 4 orders of magnitude in the dimensionless jet speed.  相似文献   

3.
3D Braginskii turbulence simulations show that the energy flux in the core/edge transition region of a tokamak is strongly modulated-locally and on average-by radially propagating, nearly coherent sinusoidal or solitary zonal flows. Their primary drive is the anomalous transport together with the Stringer-Winsor term. The transport modulation and the flow excitation are due to wave-kinetic effects studied for the first time in turbulence simulations. The flow amplitudes and the transport sensitively depend on the magnetic curvature acting on the flows, which can be influenced, e.g., by shaping the plasma cross section.  相似文献   

4.
Basic methods for obtaining laser jet thrust in the supersonic regime corresponding to the supersonic flow in the jet nozzle are analyzed. It is shown that the method based on the interaction of a laser ablative jet with the supersonic flow is promising. In this case, laser thrust is formed due to additional acceleration of the flow behind the ablation region. Numerical simulation of the flow in a parabolic nozzle is employed to demonstrate the possibility of effective formation of laser thrust at a level of 3 × 10?3 N/W.  相似文献   

5.
The characteristics of supersonic impinging jets are investigated using Particle Image Velocimetry (PIV). The purpose of the experiments is to understand the jet induced forces on STOVL aircraft while hovering close to the ground. For this purpose, a large diameter circular plate was attached at the nozzle exit. The oscillations of the impinging jet generated due to a feedback loop are captured in the PIV images. The instantaneous velocity field measurements are used to describe flow characteristics of the impinging jet. The important flow features such as oscillating shock waves, slipstream shear layers and large scale structures are captured clearly by the PIV. The presence of large scale structures in the impinging jet induced high entrainment velocity in the near hydrodynamic field, which resulted in lift plate suction pressures. A passive control device is used to interfere with the acoustic waves travelling in the ambient medium to suppress the feedback loop. As a consequence, the large scale vortical structures disappeared completely leading to a corresponding reduction in the entrainment.  相似文献   

6.
The effect of acoustic feed back on global flow response is illustrated through an example of a rectangular screeching jet operating at a nominal Mach number of 1.69. Using a stereoscopic Particle Image Velocimetry, the detailed flow characteristics within a screeching cycle are obtained with fidelity. To resolve the “bias” errors inherent with standard PIV image processing technique, a novel mesh-free and high spatial resolution scheme is implemented to yield accurate velocity measurements in a complex three-dimensional supersonic flow. The axis-switching phenomenon that arises due to unusual mixing enhancement in the minor axis plane of a rectangular jet is vividly displayed. Strong streamwise vortex structure in the jet shear layers, enhanced by the inherent instability of the shear layer, is reported.  相似文献   

7.
Stereoscopic Particle Image Velocimetry (PIV) has been used to make a three-dimensional flow mapping of a jet in crossflow. The Reynolds number based on the free stream velocity and the jet diameter was nominally 2400. A jet-to-crossflow velocity ratio of 3.3 was used. Details of the formation of the counter rotating vortex pair found behind the jet are shown. The vortex pair results in two regions with strong reversed velocities behind the jet trajectory. Regions of high turbulent kinetic energy are identified. The signature of the unsteady shear layer vortices is found in the mean vorticity field.  相似文献   

8.
Fu  Hao  He  Chuangxin  Liu  Yingzheng 《显形杂志》2020,23(2):245-257
Journal of Visualization - This study investigates self-sustained oscillation of the flow in a double-cavity channel with cavity length–width ratio L/H?=?3 using a time-resolved...  相似文献   

9.
10.
The instantaneous and ensemble averaged flow characteristics of a round jet issuing normally into a crossflow was studied using a flow visualization technique and Particle Image Velocimetry measurements. Experiments were performed at a jet-to-crossflow velocity ratio, 3.3 and two Reynolds numbers, 1,050 and 2,100, based on crossflow velocity and jet diameter. Instantaneous laser tomographic images of the vertical center plane of the crossflow jet show that there exists very different natures in the flow structures of the near field jet due to Reynolds number effect even though the velocity ratio is same. It is found that the shear layer becomes much thicker when the Reynolds number is 2,100 because of the strong entrainment of the inviscid fluid by turbulent interaction between the jet and crossflow. The mean and second order statistics are calculated by ensemble averaging over 1,000 realizations of instantaneous velocity fields. The detail characteristics of mean flow field, streamwise and vertical rms velocity fluctuations, and Reynolds shear stress distributions are presented. The new PIV results are compared with those from previous experimental and LES studies.  相似文献   

11.
Ma  Xingyu  Tang  Zhanqi  Jiang  Nan 《显形杂志》2020,23(4):559-564
Journal of Visualization - We carry out experiments on vortex ring flows submerged underwater which are generated by a pulsatile circular jet with the stroke ratio of 10. The pulsatile Reynolds...  相似文献   

12.
The flow characteristics in a confined slot jet impinging on a flat plate were investigated in low Reynolds number regime by using time-resolved Particle Image Velocimetry technique. The jet Reynolds number was varied from 404 to 1026, where it is presumed that the transient regime exists. We found that the vortical structures in the shear layer are developed with increase of Reynolds number and that the jet becomes remains steady at the Reynolds number of 404. Vortical structures and their temporal evolution are verified and the results were compared with previous numerical studies.  相似文献   

13.
Classical large-eddy simulation (LES) modelling assumes that the passive subgrid-scale (SGS) models do not influence large-scale quantities, even though there is now ample evidence of this in many flows. In this work, direct numerical simulation (DNS) and large-eddy simulations of turbulent planar jets at Reynolds number ReH = 6000 including a passive scalar with Schmidt number Sc = 0.7 are used to study the effect of several SGS models on the flow integral quantities e.g. velocity and scalar jet spreading rates. The models analysed are theSmagorinsky, dynamic Smagorinsky, shear-improved Smagorinsky and the Vreman. Detailed analysis of the thin layer bounding the turbulent and non-turbulent regions – the so-called turbulent/non-turbulent interface (TNTI) – shows that this region raises new challenges for classical SGS models. The small scales are far from equilibrium and contain a high fraction of the total kinetic energy and scalar variance, but the situation is worse for the scalar than for the velocity field. Both a-priori and a-posteriori (LES) tests show that the dynamic Smagorinsky and shear-improved models give the best results because they are able to accurately capture the correct statistics of the velocity and passive scalar fluctuations near the TNTI. The results also suggest the existence of a critical resolution Δx, of the order of the Taylor scale λ, which is needed for the scalar field. Coarser passive scalar LES i.e. Δx ≥ λ results in dramatic changes in the integral quantities. This fact is explained by the dynamics of the small scales near the jet interface.  相似文献   

14.
A stereo PIV (SPIV) acquisition and analysis system was developed to measure three velocity components in planar flow fields. The analysis software is based on a third order mapping function method. The system was calibrated by imaging a square grid in three measurement planes with two Kodak Megaplus cameras oriented at 30 to the bisector between them. The camera images were dewarped into real coordinates by employing a set of transform matrices computed for each calibration plane. Bias and rms errors were determined by comparing displacements measured directly with displacements estimated from the dewarping and recombination algorithm. The bias errors in the directions parallel with the measurement plane were negligible while the bias in thez direction was about 0.6 pixel. The rms errors, 0.2–0.3 pixels, were largest in thez direction. These errors were thought to result from limitations in the calibration method. The SPIV system was tested in a two-dimensional oblique jet with Reynolds number of 1800. The three dimensional results were taken in a vertical (x, y) plane parallel with the jet span. The SPIV results were compared with LDV data and two-dimensional PIV data obtained in a vertical (y, z) plane of the same jet. The SPIV measurements yielded accurate values for the in-plane mean and rms velocity components. The measured out-of-plane mean component was underestimated due to the bias error mentioned above. The rms component was accurate in part of the field but overestimated in another part due to local variations in rms error. It is expected that in the future, the out-of-plane errors can be minimized by improving the calibration and transformation procedures.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号