首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Information on the structural evolution of materials under high pressure is of great importance for understanding the properties of materials exhibited under high pressure. High‐pressure powder diffraction is widely used to investigate the structure evolution of materials at such pressure. Unfortunately, powder diffraction data are usually insufficient for retrieving the atomic structures, with high‐pressure single‐crystal diffraction being more desirable for such a purpose. Here, a high‐pressure single‐crystal diffraction experimental system developed recently at beamline 4W2 of Beijing Synchrotron Radiation Facility (BSRF) is reported. The design and operation of this system are described with emphasis on special measures taken to allow for the special circumstance of high‐pressure single‐crystal diffraction. As an illustration, a series of diffraction datasets were collected on a single crystal of LaB6 using this system under various pressures (from ambient pressure to 39.1 GPa). The quality of the datasets was found to be sufficient for structure solution and subsequent refinement.  相似文献   

2.
Mural paintings of exceptional quality, which can be discerned in spite of their extensive mechanical damage and colour fading, have been uncovered in the church of St. Gallus in Kuřívody, Northern Bohemia, dated to the second half of the 13th century. Materials research with particular use of portable X‐ray fluorescence, Raman micro‐spectroscopy and powder X‐ray micro‐diffraction revealed the presence of rare pigments. In Kuřívody, it is only a second identification of intentionally used yellow mineral crocoite (PbCrO4) in European art. Its identification is facilitated by providing a very good Raman scattering, even when present in small amounts in fragmentarily preserved colour layers. Light yellow mimetite (Pb5(AsO4)3Cl) was never before mentioned as intentionally used pigment in Europe. Its finding in Kuřívody, however, corresponds more likely with undesirable physical–chemical conditions causing its formation by alteration of orpiment (As2S3) and minium (Pb3O4). Obtained results highlight the importance of Raman spectroscopy for direct identification of mineral pigments in low concentrations, which may be crucial for interpreting cultural heritage objects in historical context. By materials, the almost forgotten paintings in Kuřívody can be seen as outstanding and rare example of ancient artistic tradition that has spread to Europe from Mediterranean in early Middle Ages. After all, mineral crocoite was already used by ancient Egyptians to paint sarcophagi and degraded orpiment decorates the walls of the Nefertari's tomb in Thebes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
We report a preparation of new 6‐substituted‐5,6‐dihydrobenzo[c]phenanthridines by the reaction of azoles with quaternary benzo[c]phenanthridine alkaloids sanguinarine and chelerythrine. The prepared compounds have been characterized by NMR spectroscopy, mass spectrometry, and single‐crystal X‐ray diffraction. Conformational behaviors of carbazole derivatives in solution have been investigated by low‐temperature NMR experiments. Barriers to rotation around newly formed C6–N bonds were determined to be 12–13 kcal/mol. Quantum chemical calculations have been used to reproduce the experimental observations. Large structural effects on several 1H NMR resonances were observed experimentally, analyzed by Density Functional Theory (DFT) calculations at B3LYP/6‐311+G(d,p)/PCM level, and interpreted by ring‐current effects of the benzo[c]phenanthridine and carbazole units. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
One of the most fundamental properties in chemistry is the bond dissociation energy, the energy required to break a specific bond of a molecule. In this paper, the Fe–N homolytic bond dissociation energies [ΔHhomo(Fe–N)'s] of 2 series of (meta‐substituted anilinyl)dicarbonyl(η5‐cyclopentadienyl) iron [m‐G‐C6H4NHFp ( 1 )] and (meta‐substituted α‐acetylanilinyl)dicarbonyl(η5‐cyclopentadienyl) iron [m‐G‐C6H4N(COMe)Fp ( 2 )] were studied using density functional theory methods with large basis sets. In this study, Fp is (η5‐C5H5)Fe(CO)2, and G is NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, and NMe2. The results show that Tao‐Perdew‐Staroverov‐Scuseria, Minnesota 2006, and Becke's power‐series ansatz from 1997 with dispersion corrections functionals can provide the best price/performance ratio and accurate predictions of ΔHhomo(Fe–N)'s. The ΔΔHhomo(Fe–N)'s ( 1 and 2 ) conform to the captodative principle. The polar effects of the meta‐substituents show the dominant role to the magnitudes of ΔΔHhomo(Fe–N)'s. σα· and σc· values for meta‐substituents are all related to polar effects. Spin‐delocalization effects of the meta‐substituents in ΔΔHhomo(Fe–N)'s are small but not necessarily zero. RE plays an important role in determining the net substituent effects on ΔHhomo(Fe–N)'s. Insight from this work may help the design of more effective catalytic processes.  相似文献   

5.
The results of pressure‐tuning Raman spectroscopic, X‐ray powder diffraction and solid‐state 13C‐NMR studies of selected dicarboxylate anions intercalated in a Mg–Al layered double hydroxide lattice are reported. The pressure dependences of the vibrational modes are linear for pressures up to 4.6 GPa, indicating that no phase transitions occur. The interlayer spacings show that the oxalate, malonate and succinate dianions are oriented perpendicular to the layers, but the glutarate and adipate are tilted. The solid‐state 13C‐NMR spectra of these materials show full chemical shift anisotropy and, therefore, the anions are not mobile at room temperature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A series of Ca3–3x /7Y2x /7(PO4)2:Eu2+ phosphors were synthesized by conventional solid‐state reaction. The photoluminescence spectra elucidate that the evolution of emission hue from violet–blue to blue–greenish could be realized by incorporating Y3+ ions. The aliovalent substitution of Y3+ for Ca2+ forms cationic vacancies (h denotes a vacancy) at Ca(4) site according to the formula 3Ca2+ = 2Y3+ + h, and then facilitates the migration of dopant Eu2+ from Ca(4) site to other sites in host lattice. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

7.
The thermochemistry of organometallic complexes in solution and in the gas phase has been an area of increasing research interest. In this paper, the Fe–O and Fe–S homolytic bond dissociation energies [ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s] of two series of meta‐substituted phenoxydicarbonyl(η5‐cyclopentadienyl) iron [m‐G‐C6H4OFp ( 1 )] and (meta‐substituted benzenethiolato)dicarbonyl(η5‐cyclopentadienyl) iron [m‐G‐C6H4SFp ( 2 )] were studied using Hartree–Fock and density functional theory methods with large basis sets. In this study, Fp is (η5‐C5H5)Fe(CO)2, and G are NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, and NMe2. The results show that Tao–Perdew–Staroverov–Scuseria and Minnesota 2006 functionals can provide the best price/performance ratio and accurate predictions of ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s. The polar effects of the meta substituents show that the dominant role to the magnitudes of ΔΔHhomo(Fe–O)'s or ΔΔHhomo(Fe–S)'s. σα·, σc· values for meta substituents are all related to polar effects. Spin‐delocalization effects of the meta substituents in ΔΔHhomo(Fe–O)'s and ΔΔHhomo(Fe–S)'s are small but not necessarily zero. Molecular effects rather than ΔΔHhomo(Fe–O)'s and ΔΔHhomo(Fe–S)'s are more suitable indexes for the overall substituent effects on ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s. The meta substituent effects of meta‐electron‐withdrawing groups on the Fe–S bonds are much stronger than those on the Fe–O bonds. For meta‐electron‐donating groups, the meta substituent effects have the comparable magnitudes between series 1 and 2 . ΔΔHhomo(Fe–O)'s ( 1 ) and ΔΔHhomo(Fe–S)'s ( 2 ) conform to the captodative principle. Insight from this work may help the design of more effective catalytic processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A Zr(10 mol % Pr)O2 powder obtained by high-energy ball milling has been investigated at nanoscopic scale using primarily the Perturbed Angular Correlations technique. The aim has been to determine the nanoconfigurations around Zr4+ cations present in the solid solution and their thermal evolution with the intention of providing knowledge on the stability of the system. Results indicate that the milled product is a substitutional cubic solid solution described by two hyperfine interactions: a highly disordered interaction due to oxygen vacancies located very close to Zr4+ and an ordered interaction probably depicting a charge distribution including Pr3+ as nearest neighbor to Zr4+ probes. On cooling from high temperatures, monoclinic zirconia appears mostly at the expense of the oxygen defective cubic form. A gradual cooling indicates that destabilization of the solid solution takes place around 500°C. Thermal cycling leads to increasing amounts of the monoclinic phase.  相似文献   

9.
The nature and strength of metal–ligand bonds in organotransition‐metal complexes are crucial to the understanding of organometallic reactions and catalysis. Quantum chemical calculations at different levels of theory have been used to investigate heterolytic Fe–N bond energies of para‐substituted anilinyldicarbonyl(η5‐cyclopentadienyl)iron [p‐G‐C6H4NH(η5‐C5H5)Fe(CO)2, abbreviated as p‐G‐C6H4NHFp (1), where G = NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, and NMe2] and para‐substituted α‐acetylanilinyldicarbonyl(η5‐cyclopentadienyl)iron [p‐G‐C6H4N(COMe)(η5‐C5H5)Fe(CO)2, abbreviated as p‐G‐C6H4N(COMe)Fp (2)] complexes. The results show that BP86 and TPSSTPSS can provide the best price/performance ratio and more accurate predictions in the study of ΔHhet(Fe–N)'s. The linear correlations [r = 0.98 (g, 1a), 0.93 (g, 2b)] between the substituent effects of heterolytic Fe–N bond energies [ΔΔHhet(Fe–N)'s] of series 1 and 2 and the differences of acidic dissociation constants (ΔpKa) of N–H bonds of p‐G‐C6H4NH2 and p‐G‐C6H4NH(COMe) imply that the governing structural factors for these bond scissions are similar. And the linear correlations [r = ?0.99 (g, 1c), ?0.92 (g, 2d)] between ΔΔHhet(Fe–N)'s and the substituent σp? constants show that these correlations are in accordance with Hammett linear free energy relationships. The polar effects of these substituents and the basis set effects influence the accuracy of ΔHhet(Fe–N)'s. ΔΔHhet(Fe–N)'s(1, 2) follow the captodative principle. MEα‐COMe, para‐Gs include the influences of the whole molecules. The correlation of MEα‐COMe, para‐Gs with σp? is excellent. MEα‐COMe, para‐Gs rather than ΔΔHhet(Fe–N)'s in series 2 are more suitable indexes for the overall substituent effects on ΔHhet(Fe–N)'s(2). Insight from this work may help the design of more effective catalytic processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Polarized FT‐IR, Raman, neutron scattering (IINS), and UV‐Vis‐NIR spectra of 2‐methyl‐4‐nitroaniline (MNA) crystal plates, powder, and solutions were measured in the 10–50 000 cm−1 range. The FT‐IR spectrum of deuterated MNA (DMNA) in KBr pellet, the Raman spectrum of the DMNA powder as well as the EPR spectrum of the MNA powder were also recorded. Complete assignments of bands to normal vibrations have been proposed. Density functional theory (DFT) calculations of wavenumbers and potential energy distribution (PED) have been performed to strengthen the assignments. The analysis of vibrational and electronic spectra has revealed vibronic couplings in MNA molecules in solutions and in crystals. In the polarized FT‐IR spectra of the crystal five unusually large bands are observed in MIR and NIR regions. Their origin is discussed in terms of N H···O, C H···O, C H···H N hydrogen bonds, intermolecular charge transfers, electrostatic interactions, and ion radicals formation in the crystal. The role of a methyl group introduction to 4‐nitroaniline is analyzed. The crystal structure of MNA at the room temperature was re‐investigated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Rare‐earth (RE = Ce, Pr, Sm, Tb) doped ternary sulfides of the general formula RbLu0.99RE0.01S2 and undoped RbLuS2 were synthesized in the form of crystalline hexagonal platelets by chemical reaction in the electric resistance furnace under the flow of hydrogen sulfide. Only a single crystalline phase of the rhombohedral lattice system (space group $ {\rm R}\bar 3{\rm m}) $ was detected by X‐ray powder diffraction. Absorption and luminescence characteristics were measured. The band edge of RbLuS2 is found at 310 nm, and characteristic Pr3+, Sm3+ and Tb3+ 4f–4f emission lines in the visible spectral range are observed. A charge transfer transition in the Pr3+ excitation spectrum in the near UV spectral region is revealed and an efficient energy transfer from the host to the emission centers is found. The application potential for white LED or X‐ray phosphors is discussed. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
In this work it is presented for the first time the nanostructured hydroxyapatites doped with 0.5, 1.0 and 2.0 wt% of Eu3+ prepared at room temperature by the mechanical alloying technique. X-ray diffraction powder (XRD), infrared (IR) and Raman scattering spectroscopy, scanning electron microscopy (SEM), microhardness measurements as well as luminescent data of Eu3+ were used to investigate the structural and optical properties of these nanomaterials. The electrical and dielectrical analyses were used with the intention of having a better comprehension about the electromagnetic fields in pure and doped hydroxyapatites.  相似文献   

13.
First principles molecular orbital and plane‐wave ab initio calculations have been used to investigate the structural and energetic properties of a new cage compound 2, 4, 6, 8, 12‐pentanitro‐10‐(3, 5, 6‐trinitro (2‐pyridyl))‐2, 4, 6, 8, 12‐hexaazatetracyclo [5.5.0.03,11.05,9]dodecane (PNTNPHATCD) in both the gas and solid phases. The molecular orbital calculations using the density functional theory methods at the B3LYP/6‐31G(d,p) level indicate that both the heat of formation and strain energy of PNTNPHATCD are larger than those of 2, 4, 6, 8, 10, 12‐hexanitro‐2, 4, 6, 8, 10, 12‐hexaazatetracyclo [5.5.0.0.0] dodecane (CL‐20). The infrared spectra and the thermodynamic property in gas phase were predicted and discussed. The calculated detonation characteristics of PNTNPHATCD estimated using the Kamlet–Jacobs equation equally matched with those of CL‐20. Bond‐breaking results on the basis of natural bond orbital analysis imply that C–C bond in cage skeleton, C–N bond in pyridine, and N–NO2 bond in the side chain of cage may be the trigger bonds in the pyrolysis. The structural properties of PNTNPHATCD crystal have been studied by a plane‐wave density functional theory method in the framework of the generalized gradient approximation. The crystal packing predicted using the Condensed‐phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force fields belongs to the Pbca space group, with the lattice parameters a = 20.87 Å, b = 24.95 Å, c = 7.48 Å, and Z = 8, respectively. The results of the band gap and density of state suggest that the N–NO2 bond in PNTNPHATCD may be the initial breaking bond in the pyrolysis step. As the temperature increases, the heat capacity, enthalpy, and entropy of PNTNPHATCD crystal all increase, whereas the free energy decreases. Considering that the cage compound has the better detonation performances and stability, it may be a superior high energy density compound. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Nonresonance (or normal) Raman scattering (NRS), resonance Raman scattering (RRS), surface‐enhanced Raman scattering (SERS), and surface‐enhanced RRS (SERRS) spectra of [Fe(tpy)2]2+ complex dication (tpy = 2,2':6',2''‐terpyridine) are reported. The comparison of RRS/NRS and SERRS/SERS excitation profiles of [Fe(tpy)2]2+ spectral bands in the range of 445–780 nm is supported by density functional theory (DFT) calculations, Raman depolarization measurements, comparison of the solid [Fe(tpy)2](SO4)2 and solution RRS spectra, and characterization of the Ag nanoparticle (NP) hydrosol/[Fe(tpy)2]2+ SERS/SERRS active system by surface plasmon extinction spectrum and transmission electron microscopy image of the fractal aggregates (D = 1.82). By DFT calculations, both the Raman active modes and the electronic states of the complex have been assigned to the symmetry species of the D2d point group. It has been demonstrated that upon the electrostatic bonding of the complex dication to the chloride‐modified Ag NPs, the geometric and ground state electronic structure of the complex and the identity of the three different metal‐to‐ligand charge transfer (1MLCT) electronic transitions remain preserved. On the other hand, the effect of ion pairing manifests itself by a slight change in localization of one of the electronic transitions (with max. at 552 nm) as well as by promotion of the Herzberg–Teller activation of E modes resulting from coupling of E and B2 excited electronic states. Finally, the very low, 1 × 10−11 M SERRS spectral detection limit of [Fe(tpy)2]2+ at 532‐nm excitation is attributed to a concerted action of the electromagnetic and molecular resonance mechanism, in conjunction to the electrostatic bonding of the complex dication to the chloride‐modified Ag NP surface. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Metal–ligand bond enthalpy data can afford invaluable insights into important reaction patterns in organometallic chemistry and catalysis. In this paper, the Fe–O and Fe–S homolytic bond dissociation energies [ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s] of two series of para‐substituted phenoxydicarbonyl(η5‐cyclopentadienyl) iron [p‐G‐C6H4OFp ( 1 )] and (para‐substituted benzenethiolato)dicarbonyl(η5‐cyclopentadienyl) iron [p‐G‐C6H4SFp ( 2 )] were studied using Hartree–Fock and density functional theory (DFT) methods with large basis sets. In this study, Fp is (η5‐C5H5)Fe(CO)2, and G are NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, and NMe2. The results show that DFT methods can provide the best price/performance ratio and accurate predictions of ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s. The remote substituent effects on ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s [ΔΔHhomo(Fe–O)'s and ΔΔHhomo(Fe–S)'s] can also be satisfactorily predicted. The good correlations [r = 0.98 (g, 1), 0.98 (g, 2)] of ΔΔHhomo(Fe–O)'s and ΔΔHhomo(Fe–S)'s in series 1 and 2 with the substituent σp+ constants imply that the para‐substituent effects on ΔHhomo(Fe–O)'s and ΔHhomo(Fe–S)'s originate mainly from polar effects, but those on radical stability originate from both spin delocalization and polar effects. ΔΔHhomo(Fe–O)'s ( 1 ) and ΔΔHhomo(Fe–S)'s ( 2 ) conform to the captodative principle. Insight from this work may help the design of more effective catalytic processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The nature and strength of metal–ligand bonds in organotransition–metal complexes is crucial to the understanding of organometallic reactions and catalysis. The Fe‐N homolytic bond dissociation energies [ΔHhomo(Fe‐N)′s] of two series of para‐substituted Fp anilines p‐G‐C6H4NHFp [1] and p‐G‐C6H4N(COMe)Fp [2] were studied using the Hartree–Fock (HF) and the density functional theory methods with large basis sets. In this study, Fp is (η5‐C5H5)Fe(CO)2 and G are NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO and NMe2. The results show that BP86 and TPSSTPSS can provide the best price/performance ratio and accurate predictions of ΔHhomo(Fe‐N)′s. B3LYP can also satisfactorily predict the α and remote substituent effects on ΔHhomo(Fe‐N)′s [ΔΔHhomo(Fe‐N)′s]. The good correlations [r = 0.96 (g, 1), 0.99(g, 2)] of ΔΔHhomo(Fe‐N)′s in series 1 and 2 with the substituent σp+ constants imply that the para‐substituent effects on ΔHhomo(Fe‐N)′s originate mainly from polar effects, but those on radical stability originate from both spin delocalization and polar effects. ΔΔHhomo(Fe‐N)′s(1,2) conform to the captodative principle. Insight from this work may help the design of more effective catalytic processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, experimental and theoretical vibrational spectral results of the molecular structures of 6,8‐dichloroflavone (6,8‐dcf) and 6,8‐dibromoflavone (6,8‐dbf) are presented. The FT‐IR and FT‐Raman spectra of the compounds have been recorded together between 4000 and 400 cm−1 and 3500–5 cm−1 regions, respectively. The molecular geometry and vibrational wavenumbers of 6,8‐dcf and 6,8‐dbf in their ground state have been calculated by using DFT/B3LYP functional, with 6‐31 + + G(d,p) basis set used in calculations. All calculations were performed with Gaussian03 software. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. Scale factors have been used in order to compare how the calculated and experimental data are in agreement. Theoretical infrared intensities are also reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Nanocrystalline Mn‐doped zinc oxides Zn1−xMnxO (x = 0–0.10) were synthesized by the sol–gel technique at low temperature. The calcination temperature of the as‐prepared powder was found at 350 °C using differential thermal analysis. A thermogravimetric analysis showed that there is a mass loss in the as‐prepared powder till 350 °C and an almost constant mass till 800 °C. The X‐ray diffraction patterns of investigated nanopowders calcined at 350 °C correspond to the hexagonal ZnO structure without any foreign impurities. The average grain size of the nanocrystal that was observed around ∼25–40 nm from transmission electron microscopy matched well with the crystallite size calculated from the line shape of X‐ray diffraction. The chemical bonding structure in Zn1−xMnxO nanopowders was examined using X‐ray photoelectron spectroscopy techniques, which indicate substitution of Mn2+ ions into Zn2+ sites in ZnO lattice. Micro Raman spectroscopy confirmed the insertion of Mn ions in the ZnO host matrix, and similar wurtzite structure of Zn1−xMnxO (x < 10%) nanocrystals. Temperature‐dependent Raman spectra of the nanocrystals displayed suppression of luminescence and enhancement in full width at half maximum in pure ZnO nanocrystals with increase in temperature, which suggests an enhancement in particle size at elevated temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The knowledge of accurate bond strengths is a fundamental basis for a proper analysis of chemical reaction mechanisms. Quantum chemical calculations at different levels of theory have been used to investigate heterolytic Fe–O and Fe–S bond energies of (meta‐substituted phenoxy)dicarbonyl(η5‐cyclopentadienyl) iron [m‐G‐C6H4OFp ( 1 )] and (meta‐substituted benzenethiolato)dicarbonyl(η5‐cyclopentadienyl) iron [m‐G‐C6H4SFp ( 2 )] complexes. In this study, Fp is (η5‐C5H5)Fe(CO)2, and G is NO2, CN, COMe, CO2Me, CF3, Br, Cl, F, H, Me, MeO, and NMe2. The results show that Tao–Perdew–Staroverov–Scuseria and Becke's power‐series ansatz from 1997 with dispersion corrections functionals can provide the best price/performance ratio and accurate predictions of ΔHhet(Fe–O)'s and ΔHhet(Fe–S)'s. The excellent linear free energy relations [r = 1.00 (g, 1e), 1.00 (g, 2b)] among the ΔΔHhet (Fe–O)'s and δΔG0 of O?H bonds of m‐G‐C6H4OH or ΔΔHhet(Fe–S)'s and ΔpKa's of S?H bonds of m‐G‐C6H4SH imply that the governing structural factors for these bond scissions are similar. And, the linear correlations [r = ?0.97 (g, 1 g), ?0.97 (g, 2 h)] among the ΔΔHhet (Fe–O)'s or ΔΔHhet(Fe–S)'s and the substituent σm constants show that these correlations are in accordance with Hammett linear free energy relationships. The inductive effects of these substituents and the basis set effects influence the accuracy of ΔHhet(Fe–O)'s or ΔHhet(Fe–S)'s. The ΔΔHhet(Fe–O)'s(g) (1) and ΔΔHhet(Fe–S)'s(g)(2) follow the capto‐dative Principle. The substituent effects on the Fe–O bonds are much stronger than those on the less polar Fe–S bonds. Insight from this work may help the design of more effective catalytic processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Dy3+ and Sm3+ doped Sr5SiO4Cl6 phosphors were prepared by the modified solid state method and their luminescent properties were studied. From a powder X-ray diffraction (XRD) analysis the formation of Sr5SiO4Cl6 was confirmed. In the photoluminescence emission spectra, the Sr5SiO4Cl6:Dy3+ phosphors show efficient blue and yellow band emissions, which originates from the 4F9/26H15/2 and 4F9/26H13/2 transitions of Dy3+ ion, respectively. Photoluminescence properties of Sm3+ doped Sr5SiO4Cl6 phosphor exhibited characteristic orange-red emission coming from the intra-4f-shell 4G5/26HJ electron transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号