首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of the magnetic susceptibility of AgPd alloys with Fe and Mn impurities have been performed at temperatures from 1.4 K to 300 K. Alloys with 5 and 10 at.% Pd, 2 and 6 at. ppm Fe and with Mn concentrations in the range 10 to 7,000 at. ppm were investigated. The temperature variation of the impurity susceptibility was analysed according to a Curie-Weiss law. The effective moment for Fe varies with the Pd concentration, which is interpreted as due to interactions between near neighbour Fe and Pd atoms. These interactions tend to lower the characteristic temperature of single Fe impurities and induce a spin on the Pd atom ferromagnetically coupled to the Fe spin. InAgPdMn one finds no such induced moment on the Pd atoms. The effective momentµ eff =(5.36±0.10)µ B per Mn atom and the Curie-Weiss temperature=(0.08±0.09) K are independent of Pd as well as Mn concentrations.µ eff is slightly higher than for Mn in very diluteAgMn, which may be due to a different polarisation of the conduction electron gas around the impurities.  相似文献   

2.
We have studied the electron structure and magnetic properties of Heusler phase Co2YBi and half-Heusler phase CoYBi (Y=Mn, Cr) by using the full-potential linearized-augmented plane-wave (FLAPW) method. Co2MnBi and Co2CrBi are predicted to be half-metallic magnetism with a total magnetic moment of 6 and 5 μB, respectively, well consistent with the Slater-Pauling rule. We also predict CoMnBi to be half-metallic magnetism with a slight compression. The gap origin for Co2MnBi and Co2CrBi is due to the 3d electron splitting of Mn (Cr) and Co atoms, and the gap width depends on Co electron splitting. The atom coordination surroundings have a great influence on the electron structure, and consequently the Y site in the X2YZ structure has a more remarkable electron splitting than the X site due to the more symmetric surroundings. The investigation regarding the lattice constant dependence of magnetic moment shows that the Co magnetic moment exhibits an opposite behavior with the change of the lattice constant for Heusler and half-Heusler alloys, consequently leading to the different variation trends for total magnetic moment. The variation of total and atom magnetic moment versus lattice constant can be explained by the extent of 3d electron splitting and localization of Mn (Cr) and Co atoms for both the series of alloys.  相似文献   

3.
Elzain  M. E. 《Hyperfine Interactions》2002,141(1-4):35-45
We have studied the Fe-X (X=B, C and N) systems, represented by clusters of atoms, using the discrete variational method. The calculated properties at the cluster's central site are compared with experimental and other theoretical results. The local magnetic, contact magnetic hyperfine field and contact charge density at the central site were calculated for different locations of impurities in bct, fcc and for intermediate structures. The calculated properties for N impurities are somehow different from those obtained for B and C impurities. The reasons behind the large average magnetic moment at Fe site in Fe-N systems were not convincingly clarified, however, distinctive features related to these systems are pointed out. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Hyperfine fields of impurities of the atomic number Z=1–56 at the substitutional site and those of light impurities of Z=1–9 at the interstitial sites in ferromagnetic iron are calculated by the KKR method adapted to the system containing a single impurity atom. The potential of the impurity atom is determined self-consistently by use of the local spin density functional formalism. The results for nonmagnetic sp valence impurities agree with those of the previous nonself-consistent calculation by Katayama-Yoshida, Terakura and Kanamori except for a few cases, confirming their theory of the systematic variation of hyperfine fields. The calculation for magnetic impurities of transition elements is presented for the first time in this paper. The calculations mentioned so far assume that impurities are situated at the center of each site. For the purpose of discussing the stability of the impurity positions, the change of the adiabatic potential due to displacements from the center is calculated by carrying out similar self-consistent calculations for off-center impurity positions. It is concluded that positive muon and some light impurities including boron will be displaced from the center when trapped in a vacancy.  相似文献   

5.
The influence of p- and n-type electronic dopants on Mn incorporation in bulk Si and Ge is studied using first-principles calculations within density functional theory. In Si, it is found that the site preference of a single Mn atom is reversed from interstitial to substitutional in the presence of a neighboring n-type dopant. In Ge, a Mn atom is more readily incorporated into the lattice when an n-type dopant is present in its immediate neighborhood, forming a stable Mn-dopant pair with both impurities at substitutional sites. A detailed analysis of the magnetic exchange interactions between such pairs reveals a new type of magnetic anisotropy in both systems.  相似文献   

6.
First-principles calculations are performed to investigate the electronic structures and magnetic properties of(Fe, Co)-codoped 4H-SiC using the generalized gradient approximation plus Hubbard U method. We find that 4H-SiC doped with an isolated Fe atom and an isolated Co atom produces a total magnetic moment of 5.98 μ_B and 6.00 μ_B respectively. We estimate T_C of about 263.1 K for the(Fe, Co)-codoped 4H-SiC system. We study ferromagnetic and antiferromagnetic coupling in(Fe, Co)-codoped 4H-SiC. Ferromagnetic behavior is observed.The strong ferromagnetic couplings between local magnetic moments can be attributed to p–d hybridization between Fe, Co and neighboring C. However, the(Fe, Co, V_(Si))-codoped 4H-SiC system shows antiferromagnetic coupling when an Si vacancy is introduced in the same 4H-SiC supercell. The results may be helpful for further study on transition metal-codoped systems.  相似文献   

7.
黄毅华  江东亮  张辉  陈忠明  黄政仁 《物理学报》2017,66(1):17501-017501
d~0铁磁性SiC被认为是自旋电子学领域的关键材料之一,受到广泛关注.本文采用氩气气氛保护的共烧掺杂方法制备具有d~0铁磁性的Al掺杂6H-SiC粉体.氩气气氛能有效抑制SiC在高温下的分解,保护Al的有效掺入.所制备的粉体磁滞回线明显,矫顽力大,饱和磁矩达到0.07 emu/g.随着煅烧温度的升高,粉体从原来的抗磁性逐渐转变为铁磁性,当温度进一步升高至2200℃以上时,粉体重新表现为抗磁性.采用第一性原理计算了其磁性的来源,并分析其净自旋在正空间中的分布情况.计算表明,Al原子与空位的共同作用产生了1.0μB的局域磁矩,且其在c轴方向具有较稳定磁耦合作用.Al掺杂6H-SiC粉体的磁性主要来自于C原子的p轨道电子.  相似文献   

8.
詹文山  沈保根  赵见高 《物理学报》1985,34(12):1613-1619
本文系统地报道单辊液淬方法制备FeTmB(Tm=Ti,V,Cr,Mn,Zr,Nb,Mo,Ta,W)非晶态合金的磁性,讨论了3d,4d,5d元素的加入对非晶态FeB合金的磁矩和居里温度的影响。实验结果表明在非晶态FeTmB合金系中Fe原子磁矩都在2.0μB左右。Tm原子在非晶态Fe基合金中比在相应的晶态合金中显示更强的局域特性。Tm原子的磁矩与元素的外层电子数有关,IVB(Ti),VB(V),VIB(Cr),VIIB(Mn)族原子的磁矩分别约为4,5,4,3μB,Tm的磁矩与铁原子磁矩反平行耦合。合金磁矩随Tm含量的变化率dμ/dx与混合模型的计算值相符合。用虚拟束缚态讨论,得到IVB(Ti),VB(V)族元素的虚拟束缚态在费密面以上,VIB(Cr),VIIB(Mn)族元素的虚拟束缚态与费密面交迭。 关键词:  相似文献   

9.
Mössbauer effect of Fe57 embedded as very dilute substitutional impurities in Pd2MnSn was studied. The impurities are seen to replace the three elements in the alloy. Although the Curie temperature of the alloy is 189K, well below the room temperature, the Mössbauer spectrum recorded at room temperature consisted of two distinct 6-finger magnetic hyperfine spectra and a single unsplit line. One of the 6-finger patterns which corresponds to an internal magnetic field ofH int=?375 kOe is inferred to arise due to local magnetic coupling of the localized magnetic moments of Fe impurities at the Pd sites with those of the 4 Mn first nearest neighbours of the Fe impurities. The other 6-finger pattern which corresponds to an internal magnetic field ofH int=?335 kOe is inferred to arise due to the local magnetic coupling of the localized magnetic moments of the Fe impurities at the Sn sites with those of the 6 Mn second nearest neighboours of the Fe impurities. The difference in the internal magnetic fields observed at the Pd and Sn sites in the alloy could be understood qualitatively, on the basis of RKKY theory, as arising due to the different conduction electron polarization contributions to the net internal magnetic field at the Fe impurity sites. The results of the measurements suggest that the localized magnetic moments of Fe57 impurities at Pd and Sn sites are antiferromagnetically coupled with the moments of their neighbouring Mn atoms.  相似文献   

10.
采用KKR-CPA-LDA方法研究了CuMnAl,CoMnAl和CuCoMnAl四元合金中磁性原子磁矩和Co-Mn间的交换作用.通过与实验结果对比,揭示了Mn的磁矩和Co的磁矩以及它们的相互作用随成分变化的规律.研究发现,在Cu50Mn25+xAl25-x合金中超过化学配比并占据Al位的Mn原子是反铁磁的,而且由于近邻环境的不同,其磁矩大于原有Mn原子的磁矩.在Co50Mn25+< 关键词: KKR-CPA-LDA计算 Co-Mn间交换作用  相似文献   

11.
宋德王  牛原  肖黎鸥  李丹 《计算物理》2012,29(2):277-284
采用基于密度泛函理论的第-性原理方法,研究Mn掺杂ZnS(110)表面的电子结构和磁性.计算分析不同掺杂组态的几何参数、形成能、磁矩、电子态密度以及电荷密度.结果表明:单个Mn原子掺杂,替位于表面第二层的Zn原子时体系形成能最低,说明该层是最稳定的掺杂位置.对于两个Mn原子的掺杂,当Mn与Mn之间呈反铁磁耦合时体系最稳定.体系的总磁矩和自由Mn原子的磁矩差别很小,但是Mn原子的局域磁矩却依赖于Mn原子的3d态和近邻S原子的3p态的杂化作用,即受周围S原子环境的变化影响较大.此外,分析电荷密度图得出Mn原子替换Zn原子后与S原子形成了更强的共价键.  相似文献   

12.
By means of the first-principles full potential linearized augmented plane-wave method within the local density approximation for the exchange-correlation functional, we have investigated the magnetism and electronic structure of Mn- and V-doped zinc blende ZnTe. Total energy calculations show that, for high doping concentration (12.5%), ZnTe:Mn has an antiferromagnetic ground state while the ferromagnetic state is more favorable than the antiferromagnetic state for ZnTe:V. Furthermore, ZnTe with a low doping of Mn (6.25%) has a stable ferromagnetic ground state, which is in agreement with the experimental results. The calculated magnetic moment of ZnTe doped with Mn (V) mainly originates from transition metal Mn (V) atom with a little contribution from Te atom due to the hybridization between Mn (V) 3d and Te 5p electrons. Electronic structure indicates that Mn-doped ZnTe is a semiconductor, but V-doped ZnTe shows a half-metallic characteristic. We also discuss the difference between electronic and magnetic properties for ZnTe doped with 12.5% and 6.25% Mn.  相似文献   

13.
The effect of nitrogen doping on the magnetic properties of (ZnO)(n) clusters (n = 1-16) has been investigated using spin polarized density functional theory. The total energy calculations suggest that N is more stable at the O site than at the Zn site in (ZnO)(n) clusters and induces a magnetic moment of 1 μ(B)/N atom. The N-Zn-N configuration is more stable than isolated N for 3D structures. The N dopants do not show any tendency for clustering. The binding energy is found to decrease with the increase in the number of N dopants. The magnetic moment increases gradually with the increase in the number of atoms with 1 μ(B)/N atom for n ≤ 4 and less than 1 μ(B)/N for n > 4. The local magnetic moment is mainly localized at the N site with a small magnetic moment induced at the O site. The presence of a Zn vacancy (V(Zn)) induced an additional magnetic moment of 2 μ(B) on the nearest O atoms. The N dopant prefers to form a N-V(Zn) pair. The combination of N and V(Zn) in 3D structures leads to a total magnetic moment of 3 μB. The Mulliken charge transfers from Zn to N and O in all N doped (ZnO)(n) clusters. The calculated results are consistent with existing experimental and theoretical results.  相似文献   

14.
The chemical selectivity and great sensitivity of the Extended X-ray Absorption Spectroscopy technique allowed the determination, in the paramagnetic phase, of the structural distortions induced by doping in the spin-Peierls CuGeO3 compound. The distorted environments were analyzed as a function of concentration, magnetic nature of impurity and the substitution site (Ni, Mn and Zn impurities on the Cu site, Si impurity on the Ge site). This has led to estimate the variation of the angles and pair distances, and hence to evaluate the magnetic coupling along the Cu chains in the vicinity of the impurities. The antiferromagnetic interaction between Cu first neighbors in the pure sample is found to be weakened around Ni, almost cancelled in the case of Mn doping, and even to change sign, producing a ferromagnetic coupling for Si doping. More generally, the structural distortions on a local scale are shown to be key parameters for the understanding of the magnetic properties of doped spin-Peierls compounds.  相似文献   

15.
采用密度泛函理论中的广义梯度近似对SinMn (n=2~14) 团簇的几何构型进行优化,并对能量、频率和电子性质进行了计算. 结果表明,当n≥10时,Mn原子完全陷入Si原子形成的笼内.二阶能量差分、分裂能和垂直电离势都表明Si5Mn和Si12Mn是稳定的团簇,且12是团簇的幻数.通过对电子性质的分析发现Si12Mn团簇具有较高的化学稳定性.布局数分析表明,在Si5Mn团簇中Mn原子的磁矩(3.923 μB)是最大的.较多的电荷转移以及Mn原子的4s, 3d态和Si原子的3s, 4p态的较强杂化是导致Mn原子磁矩减小的原因.当n≥7时,SinMn 的总磁矩是1 μB.  相似文献   

16.
The magnetic state of a single magnetic atom (Mn) embedded in an individual semiconductor quantum dot is optically probed using micro-spectroscopy. A high degree of spin polarization can be achieved for an individual Mn atom localized in a quantum dot using quasi-resonant or fully-resonant optical excitation at zero magnetic field. Optically created spin polarized carriers generate an energy splitting of the Mn spin and enable magnetic moment orientation controlled by the photon helicity and energy. The dynamics and the magnetic field dependence of the optical pumping mechanism shows that the spin lifetime of an isolated Mn atom at zero magnetic field is controlled by a magnetic anisotropy induced by the built-in strain in the quantum dots. The Mn spin distribution prepared by optical pumping is fully conserved for a few microseconds. This opens the way to full optical control of the spin state of an individual magnetic atom in a solid state environment.  相似文献   

17.
韩瑞林  陈晓阳  闫羽 《中国物理 B》2017,26(9):97503-097503
The electronic structure, magnetic properties, and mechanism of magnetization in two-dimensional(2D) aluminum nitride(AlN) monolayer doped with nonmagnetic elements of group 1A(Li, Na, K) or group 2A(Be, Mg, Ca) were systematically investigated using first-principles studies. Numerical results reveal that the total magnetic moments produced by group 1A and group 2A nonmagnetic doping are 2.0μB and 1.0μB per supercell, respectively. The local magnetic moments of the three N atoms around the doping atom are the primary moment contributors for all these doped AlN monolayers. The p orbital of the dopant atom contributes little to the total magnetic moment, but it influences adjacent atoms significantly, changing their density of states distribution, which results in hybridization among the p orbitals of the three closest N atoms, giving rise to magnetism. Moreover, the doped AlN monolayer, having half-metal characteristics,is a likely candidate for spintronic applications. When two group 1A or group 2A atoms are inserted, their moments are long-range ferromagnetically coupled. Remarkably, the energy of formation shows that, if the monolayer has been grown under N-rich conditions, substitution of a group 2A atom at an Al site is easier than substitution of a group 1A atom.  相似文献   

18.
Based on first-principles calculations within density functional theory, we propose a kinetic pathway for Mn incorporation on reconstructed 2 x 2-T4 GaN(0001), characterized by concerted substitution of a Ga atom by a Mn adatom via a precursor surface site T4. The Mn dopants at low densities are randomly distributed, resulting in intrinsic diluted magnetic semiconductors (DMS). At high Mn densities, planar ferromagnetic clusters oriented in the (0001) plane can be readily formed at relatively low growth temperatures, but ferrimagnetic zigzag columns along the growth orientation will be formed at high temperatures. Furthermore, intrinsic DMS are more likely to be formed via codeposition of Mn+Ga+N at high growth rates. These findings help to explain the observed variations in both the magnetic ordering temperature TC and the magnetic nature of Ga1-xMnxN.  相似文献   

19.
A study has been made of the effect of 3d transition element substitution on the magnetic moment and Curie temperature of MnGaGe. Substitution of 3d elements with atomic number less than Mn (i.e. Ti, V, or Cr) cause relatively small changes in magnetic properties, whereas substitution of Fe, Co, Ni and Cu cause a large reduction in moment and Curie temperature, e.g. substitution of 5 at.% Fe for Mn causes the moment to decrease by 30 per cent. The moment and ferromagnetism of MnGaGe are described in terms of a band model involving both strongly correlated and intinerant 3d electrons. The effect of 3d element substitution may be qualitatively understood in terms of this model.  相似文献   

20.
薛智琴  郭永权 《中国物理 B》2016,25(6):63101-063101
The magnetisms of RCo_5(R = rare earth) intermetallics are systematically studied with the empirical electron theory of solids and molecules(EET).The theoretical moments and Curie temperatures agree well with experimental ones.The calculated results show strong correlations between the valence electronic structure and the magnetic properties in RCo_5 intermetallic compounds.The moments of RCo_5 intermetallics originate mainly from the 3d electrons of Co atoms and 4f electrons of rare earth,and the s electrons also affect the magnetic moments by the hybridization of d and s electrons.It is found that moment of Co atom at 2c site is higher than that at 3g site due to the fact that the bonding effect between R and Co is associated with an electron transformation from 3d electrons into covalence electrons.In the heavy rare-earth-based RCo_5 intermetallics,the contribution to magnetic moment originates from the 3d and 4f electrons.The covalence electrons and lattice electrons also affect the Curie temperature,which is proportional to the average moment along the various bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号