首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X‐ray imaging is used to visualize the biofluid flow phenomena in a nondestructive manner. A technique currently used for quantitative visualization is X‐ray particle image velocimetry (PIV). Although this technique provides a high spatial resolution (less than 10 µm), significant hemodynamic parameters are difficult to obtain under actual physiological conditions because of the limited temporal resolution of the technique, which in turn is due to the relatively long exposure time (~10 ms) involved in X‐ray imaging. This study combines an image intensifier with a high‐speed camera to reduce exposure time, thereby improving temporal resolution. The image intensifier amplifies light flux by emitting secondary electrons in the micro‐channel plate. The increased incident light flux greatly reduces the exposure time (below 200 µs). The proposed X‐ray PIV system was applied to high‐speed blood flows in a tube, and the velocity field information was successfully obtained. The time‐resolved X‐ray PIV system can be employed to investigate blood flows at beamlines with insufficient X‐ray fluxes under specific physiological conditions. This method facilitates understanding of the basic hemodynamic characteristics and pathological mechanism of cardiovascular diseases.  相似文献   

2.
The design and performance of a novel ultra‐high‐vacuum‐compatible artificial channel‐cut monochromator that has been commissioned at undulator beamline 8‐ID‐I at the Advanced Photon Source are presented. Details of the mechanical and optical design, control system implementation and performance of the new device are given. The monochromator was designed to meet the challenging stability and optical requirements of the X‐ray photon correlation spectroscopy program hosted at this beamline. In particular, the device incorporates a novel in‐vacuum sine‐bar drive mechanism for the combined pitch motion of the two crystals and a flexure‐based high‐stiffness weak‐link mechanism for fine‐tuning the pitch and roll of the second crystal relative to the first crystal. The monochromator delivers an exceptionally uniform and stable beam and thereby improved brilliance preservation.  相似文献   

3.
The high brilliance of third‐generation synchrotron sources increases the demand for faster detectors to utilize the available flux. The Maia detector is an advanced imaging scheme for energy‐dispersive detection realising dwell times per image‐pixel as low as 50 µs and count rates higher than 10 × 106 s?1. In this article the integration of such a Maia detector in the Microprobe setup of beamline P06 at the storage ring PETRA III at the Deutsches Elektronen‐Synchrotron (DESY) in Hamburg, Germany, is described. The analytical performance of the complete system in terms of rate‐dependent energy resolution, scanning‐speed‐dependent spatial resolution and lower limits of detection is characterized. The potential of the Maia‐based setup is demonstrated by key applications from materials science and chemistry, as well as environmental science with geological applications and biological questions that have been investigated at the P06 beamline.  相似文献   

4.
The developed curved image plate (CIP) is a one‐dimensional detector which simultaneously records high‐resolution X‐ray diffraction (XRD) patterns over a 38.7° 2θ range. In addition, an on‐site reader enables rapid extraction, transfer and storage of X‐ray intensity information in ≤30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X‐ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate, regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X‐ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high‐temperature XRD.  相似文献   

5.
A heat‐load shutter capable of frequencies from one to several tens of kHz and window times from 10 µs up to 1 ms is described. In the current configuration the water‐cooled shutter absorbs ~99% of the heat generated by the white beam. It has been successfully used for extended periods synchronized with a Jülich pulse‐selector operating at 946 Hz. The temperature of the pulse‐selector remained constant during a three‐day continuous operation. Flexibility is provided by the interchangeability of the chopper disc.  相似文献   

6.
A new setup and commissioning of transient X‐ray absorption spectroscopy are described, based on the high‐repetition‐rate laser pump/X‐ray probe method, at the 1W2B wiggler beamline at the Beijing Synchrotron Radiation Facility. A high‐repetition‐rate and high‐power laser is incorporated into the setup with in‐house‐built avalanche photodiodes as detectors. A simple acquisition scheme was applied to obtain laser‐on and laser‐off signals simultaneously. The capability of picosecond transient X‐ray absorption spectroscopy measurement was demonstrated for a photo‐induced spin‐crossover iron complex in 6 mM solution with 155 kHz repetition rate.  相似文献   

7.
全帧型CCD数码相机曝光时间的精确控制   总被引:3,自引:0,他引:3  
杜云飞  刘波  胡炳樑  唐垚  王华伟 《光子学报》2009,38(4):1025-1028
提出一种全帧型CCD数码相机曝光控制方案.在测量机械快门机械延时的基础上,控制CCD触发脉冲TRG和机械快门的控制时序,使得带电子快门的CCD相机,在机械快门的配合下,CCD的感光区都能按各种设计要求的曝光时间精确曝光,从而有效的提高了照片的分辨率.该方法设计简单,不需要额外的硬件电路,可以广泛应用于带机械快门的CCD数码相机曝光时间的精确控制中.  相似文献   

8.
An X‐ray one‐dimensionally focusing system, a refracting–diffracting lens (RDL), composed of Bragg double‐asymmetric‐reflecting two‐crystal plane parallel plates and a double‐concave cylindrical parabolic lens placed in the gap between the plates is described. It is shown that the focal length of the RDL is equal to the focal distance of the separate lens multiplied by the square of the asymmetry factor. One can obtain RDLs with different focal lengths for certain applications. Using the point‐source function of dynamic diffraction, as well as the Green function in a vacuum with parabolic approximation, an expression for the double‐diffracted beam amplitude for an arbitrary incident wave is presented. Focusing of the plane incident wave and imaging of a point source are studied. The cases of non‐absorptive and absorptive lenses are discussed. The intensity distribution in the focusing plane and on the focusing line, and its dependence on wavelength, deviation from the Bragg angle and magnification is studied. Geometrical optical considerations are also given. RDLs can be applied to focus radiation from both laboratory and synchrotron X‐ray sources, for X‐ray imaging of objects, and for obtaining high‐intensity beams. RDLs can also be applied in X‐ray astronomy.  相似文献   

9.
The protocol for image‐guided microbeam radiotherapy (MRT) developed for the Australian Synchrotron's Imaging and Medical Beamline (IMBL) is described. The protocol has been designed for the small‐animal MRT station of IMBL to enable future preclinical trials on rodents. The image guidance procedure allows for low‐dose monochromatic imaging at 50 keV and subsequent semi‐automated sample alignment in 3D with sub‐100 µm accuracy. Following the alignment, a beamline operation mode change is performed and the relevant beamline components are automatically aligned for the treatment (pink) beam to be delivered on the sample. Here, the small‐animal MRT station, the parameters and procedures for the image guidance protocol, as well as the experimental imaging results using phantoms are described. Furthermore, the experimental validation of the protocol using 3D PRESAGE® dosimeters is reported. It is demonstrated that the sample alignment is maintained after the mode change and the treatment can be delivered within the same spatial accuracy of 100 µm. The results indicate that the proposed approach is viable for preclinical trials of small‐animal MRT.  相似文献   

10.
The optical design of a two‐dimensional imaging soft X‐ray spectrometer is described. A monochromator will produce a dispersed spectrum in a narrow vertical illuminated stripe (~2 µm wide by ~2 mm tall) on a sample. The spectrometer will use inelastically scattered X‐rays to image the extended field on the sample in the incident photon energy direction (vertical), resolving the incident photon energy. At the same time it will image and disperse the scattered photons in the orthogonal (horizontal) direction, resolving the scattered photon energy. The principal challenge is to design a system that images from the flat‐field illumination of the sample to the flat field of the detector and to achieve sufficiently high spectral resolution. This spectrometer provides a completely parallel resonant inelastic X‐ray scattering measurement at high spectral resolution (~30000) over the energy bandwidth (~5 eV) of a soft X‐ray absorption resonance.  相似文献   

11.
Inelastic X‐ray scattering instruments in operation at third‐generation synchrotron radiation facilities are based on backreflections from perfect silicon crystals. This concept reaches back to the very beginnings of high‐energy‐resolution X‐ray spectroscopy and has several advantages but also some inherent drawbacks. In this paper an alternate path is investigated using a different concept, the `M4 instrument'. It consists of a combination of two in‐line high‐resolution monochromators, focusing mirrors and collimating mirrors. Design choices and performance estimates in comparison with existing conventional inelastic X‐ray scattering instruments are presented.  相似文献   

12.
A numerical method of reconstruction of an object image using an X‐ray dynamical diffraction Fraunhofer hologram is presented. Analytical approximation methods and numerical methods of iteration are discussed. An example of a reconstruction of an image of a cylindrical beryllium wire is considered. The results of analytical approximation and zero‐order iteration coincide with exact values of the amplitude complex transmission coefficient of the object as predicted by the resolution limit of the scheme, except near the edges of the object. Calculations of the first‐ and second‐order iterations improve the result at the edges of the object. This method can be applied for determination of the complex amplitude transmission coefficient of amplitude as well as phase objects. It can be used in X‐ray microscopy.  相似文献   

13.
The layout and the characteristics of the hard X‐ray beamline BL10 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA are described. This beamline is equipped with a Si(111) channel‐cut monochromator and is dedicated to X‐ray studies in the spectral range from ~4 keV to ~16 keV photon energy. There are two different endstations available. While X‐ray absorption studies in different detection modes (transmission, fluorescence, reflectivity) can be performed on a designated table, a six‐axis kappa diffractometer is installed for X‐ray scattering and reflectivity experiments. Different detector set‐ups are integrated into the beamline control software, i.e. gas‐filled ionization chambers, different photodiodes, as well as a Pilatus 2D‐detector are permanently available. The performance of the beamline is illustrated by high‐quality X‐ray absorption spectra from several reference compounds. First applications include temperature‐dependent EXAFS experiments from liquid‐nitrogen temperature in a bath cryostat up to ~660 K by using a dedicated furnace. Besides transmission measurements, fluorescence detection for dilute sample systems as well as surface‐sensitive reflection‐mode experiments are presented.  相似文献   

14.
An X‐ray grating interferometer was installed at the BL13W beamline of Shanghai Synchrotron Radiation Facility (SSRF) for biomedical imaging applications. Compared with imaging results from conventional absorption‐based micro‐computed tomography, this set‐up has shown much better soft tissue imaging capability. In particular, using the set‐up, the carotid artery and the carotid vein in a formalin‐fixed mouse can be visualized in situ without contrast agents, paving the way for future applications in cancer angiography studies. The overall results have demonstrated the broad prospects of the existing set‐up for biomedical imaging applications at SSRF.  相似文献   

15.
We present a novel approach to the miniaturization of an imaging system with high resolution and high optical magnification for camera phones. An optical zoom system with a mechanical shutter has been designed and developed, the mechanical shutter being necessary to assure high image quality. The shutter is integrated with the zooming lens group, which allows the zoom lens unit to be downsized. Performance of the zoom lens unit accommodates an image sensor of over five-mega-pixels and fulfills all the requirements of a camera phone.  相似文献   

16.
X‐ray detectors that combine two‐dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time‐gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter‐scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time‐ and location‐tagged events at rates greater than 107 events per cm2. Time‐gating can be used for improved dynamic range.  相似文献   

17.
Taking into account background correction and using Fourier analysis, a numerical method of an object image correction using an X‐ray dynamical diffraction Fraunhofer hologram is presented. An example of the image correction of a cylindrical beryllium wire is considered. A background correction of second‐order iteration leads to an almost precise reconstruction of the real part of the amplitude transmission coefficient and improves the imaginary part compared with that without a background correction. Using Fourier analysis of the reconstructed transmission coefficient, non‐physical oscillations can be avoided. This method can be applied for the determination of the complex amplitude transmission coefficient of amplitude as well as phase objects, and can be used in X‐ray microscopy.  相似文献   

18.
A systematic study is presented in which multilayers of different composition (W/Si, Mo/Si, Pd/B4C), periodicity (from 2.5 to 5.5 nm) and number of layers have been characterized. In particular, the intrinsic quality (roughness and reflectivity) as well as the performance (homogeneity and coherence of the outgoing beam) as a monochromator for synchrotron radiation hard X‐ray micro‐imaging are investigated. The results indicate that the material composition is the dominating factor for the performance. By helping scientists and engineers specify the design parameters of multilayer monochromators, these results can contribute to a better exploitation of the advantages of multilayer monochromators over crystal‐based devices; i.e. larger spectral bandwidth and high photon flux density, which are particularly useful for synchrotron‐based micro‐radiography and ‐tomography.  相似文献   

19.
Fabrication and results of high‐resolution X‐ray topography characterization of diamond single‐crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high‐heat‐load X‐ray crystal optics are reported. The plates were fabricated by laser‐cutting of the (111) facets of diamond crystals grown using high‐pressure high‐temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront‐preserving high‐heat‐load crystal optics. Wavefront characterization was performed using sequential X‐ray diffraction topography in the pseudo plane wave configuration and data analysis using rocking‐curve topography. The variations of the rocking‐curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.  相似文献   

20.
孙飞  闫达远  袁洁 《光学技术》2005,31(4):592-594
介绍了一种实用的CMOS传感器感光范围测定系统。利用积分球作标准光源,并用逻辑分析仪作数字输出信号的分析统计,测出CMOS传感器光照度接收曲线。在此基础上提出了一种基于可编程接口(FPGA)芯片控制的CMOS传感器自动调光技术。利用FPGA控制CMOS传感器的电子快门,以此来控制其光照度,达到自动调光的目的。由于FPGA是在线可编程器件,具有电路简单,实时性好,适应性强等特点,并能与后期的图像处理有机结合,所以简化了整个系统的设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号