首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A magnetic glassy carbon electrode (mGCE) was modified with a ternary composite prepared from Prussian blue (PB), magnetite (Fe3O4) nanoparticles, and reduced graphene oxide (rGO) in order to obtain an amperometric sensor for hydrazine. The utilization of Fe3O4 facilitates the magnetic immobilization and separation of sensing material, while the use of rGO enhances sensitivity. The surface coverage and the stability of the PB on the modified electrode were considerably improved. The electro-oxidative response to hydrazine was investigated with this modified mGCE using cyclic voltammetry and amperometric. The sensor, typically operated at a voltage of 0.2 V (vs. SCE), displays superior response hydrazine, with a response time of 4 s, a sensitivity of 97.73 μA μM?1 cm?2 and a 13.7 nM detection limit.
Graphical abstract A magnetic glassy carbon electrode was modified with a ternary composite prepared from Prussian blue, magnetite nanoparticles, and reduced graphene oxide to obtain a selective amperometric sensor for dissolved hydrazine.
  相似文献   

2.
A new type of manganese diselenide nanoparticles (MnSeNPs) was synthesized by using a hydrothermal method. Their surface morphology, crystallinity and elemental distribution were characterized by using transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy which scrutinize the formation of the NPs. The NPs were coated on a glassy carbon electrode (GCE), and electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were applied to study the electroanalytical properties towards the oxidation of the food additive capsaicin. The modified GCE displays lower charge transfer resistance (R ct ?=?29.52 Ω), a larger active surface area (0.089 cm2/g, and more efficient electrochemical oxidation of capsaicin compared to a MnS2/GCE and a bare GCE. The oxidation peak potential is 0.43 V (vs. Ag/AgCl) which is lower than that of previously reported GCEs. The sensor has a detection limit as low as 0.05 μM and an electrochemical sensitivity of 2.41 μA μM?1 cm?2. The method was applied to the determination of capsaicin in pepper samples.
Graphical abstract Electrochemical determination of capsaicin in pepper extract by using MnSeNPs modified electrode.
  相似文献   

3.
A glassy carbon electrode (GCE) was modified with a nanocomposite consisting of tetraoctylammonium bromide (TOAB), C60 fullerene, and palladium nanorods (PdNRs). The PdNRs were hydrothermally prepared and had a typical width of 20 ± 2 nm. The nanocomposite forms stable films on the GCE and exhibits a reversible redox pair for the C60/C60 ? system while rendering the surface to be positively charged. The modified GCE was applied to fabricate an electrochemical biosensor for detecting acetylcholinesterase (AChE) by measurement of the amount of thiocholine formed from acetylthiocholine, best at a working voltage of ?0.19 V (vs. SCE). The detection scheme is based on (a) measurement of the activity of ethyl paraoxon-inhibited AChE, and (b) measurement of AChE activity after reactivation with pralidoxime (2-PAM). Compared to the conventional methods using acetylthiocholine as a substrate, the dual method presented here provides data on the AChE activity after inhibition and subsequent reactivation, thereby yielding credible data on reactivated enzyme activity. The linear analytical range for AChE activity extends from 2.5 U L?1 to 250 kU·L?1, and the detection limit is 0.83 U L?1.
Graphical abstract Cyclovoltammetric acetylcholinesterase (AChE) activity assay is constructed based on the palladium nanorods composited with functionalized C60 fullerene (PdNR/C60 + TOAB), which aims to measure the signal change between ethyl paraoxon-inhibited and subsequent pralidoxime (2-PAM)-reactivated AChE activity.
  相似文献   

4.
The authors describe a method for signal amplification of label-free voltammetric immunosensors. A glassy carbon electrode (GCE) was modified with Prussian Blue-platinum nanoparticles (PB-PtNPs) as a redox-active species that gives a strong amperometric signal at 0.18 V (vs. Ag/AgCl). Benefitting from the excellent electrical conductivity and the strong catalytic activity to H2O2, the modified GCE gives a strongly enhanced signal. The PB-PtNPs were incorporated into a polyaniline (PANI) hydrogel to further enhance the signal. The signal response of the PB-PtNP-PANI/GCE is larger by a factor of 7.6 than that of PB-PtNP/GCE. In order to further improve electrical conductivity and immobilize antibody, gold nanoparticles (AuNPs) were deposited on the surface of the PB-PtNP-PANI hydrogel. The AuNP-PB-PtNP-PANI hydrogel nanocomposite on the GCE was used in an immunosensor for the model analyte carcinoma antigen 125 (CA125), a biomarker for epithelial ovarian cancer, by immobilizing the respective antibody on the modified GCE. A linear response found for the 0.01 to 5000 U mL?1 CA125 concentration range, with a detection limit of 4.4 mU mL?1 (at an S/N ratio of 3). The electrochemical sensitivity is as high as 119.76 μA·(U/mL)?1·cm?2. The detection of CA125 in human serum showed satisfactory accuracy compared to a commercial chemiluminescent microparticle immunoassay (CMIA).
Graphical abstract Schematic of a nanocomposites consisting of gold nanoparticles, Prussian Blue, platinum nanoparticles and polyaniline hydrogel as a signal multi-amplification sensing substrate for the ultrasensitive immuno detection of carcinoma antigen 125 (CA125).
  相似文献   

5.
A metal organic framework (MOF) of the type copper(II)-1,3,5-benzenetricarboxylic acid (Cu-BTC) was electrodeposited on electroreduced graphene oxide (ERGO) placed on a glassy carbon electrode (GCE). The modified GCE was used for highly sensitive electrochemical determination of 2,4,6-trinitrophenol (TNP). The fabrication process of the modified electrode was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Differential pulse voltammetry (DPV) demonstrates that the Cu-BTC/ERGO/GCE gives stronger signals for TNP reduction than Cu-BTC/GCE or ERGO/GCE alone. DPV also shows TNP to exhibit three reduction peaks, the first at a potential of ?0.42 V (vs. SCE). This potential was selected because the other three similarly-structured compounds (2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol) do not give a signal at this potential. Response is linear in the 0.2 to 10 μM TNP concentration range, with a 0.1 μM detection limit (at S/N =?3) and a 15.98 μA?μM?1?cm?2 sensitivity under optimal conditions. The applicability of the sensor was evaluated by detecting TNP in spiked tap water and lake water samples. Recoveries ranged between 95 and 101%.
Graphical abstract Schematic presentation of an electrochemical sensor that was fabricated by electrodeposition of the metal-organic framework (MOF) of copper(II)-1,3,5-benzenetricarboxylic acid (Cu-BTC) onto the surface of electroreduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). It was applied to sensitive and selective detection of 2,4,6-trinitrophenol (TNP).
  相似文献   

6.
Graphene oxide doped with nitrogen and sulfur was decorated with gold nanoparticles (AuNP-SN-GO) and applied as a substrate to modify a glassy carbon electrode (GCE). An aptamer against the model protein thrombin was self-assembled on the modified GCE which then was exposed to thrombin. Following aptamer-thrombin interaction, biotin-labeled DNA and aptamer 2 are immobilized on another AuNP-SN-GO hybrid and then are reacted with the thrombin/AuNP-SN-GO/GCE to form a sandwich. The enzyme label horseradish peroxidase (HRP) was then attached to the electrode by biotin–avidin interaction. HRP catalyzes the oxidation of hydroquinone by hydrogen peroxide. This generates a strong electrochemical signal that increases linearly with the logarithm of thrombin concentration in the range from 1.0?×?10?13 M to 1.0?×?10?8 M with a detection limit of 2.5?×?10?14 M (S/N?=?3). The assay is highly selective. It provides a promising strategy for signal amplification. In our perception, it has a large potential for sensitive and selective detection of analytes for which appropriate aptamers are available.
Graphic abstract A sandwich-type electrochemical aptasensor is fabricated for detection of thrombin using a glassy carbon electrode modified with nitrogen- and sulfur-doped graphene oxide and gold nanoparticles.
  相似文献   

7.
A glassy carbon electrode (GCE) was anodically oxidized by cyclic voltammetry (CV) in 0.05 M sulfuric acid to introduce hydroxy groups on its surface (GCEox). Next, an imidazolium alkoxysilane (ImAS) is covalently tethered to the surface of the GCEox via silane chemistry. This electrode is further modified with graphene oxide (GO) which, dispersed in water, spontaneously assembles on the electrode surface through electrostatic interaction and π-interaction to give an electrode of type GO/ImAS/GCE. Electroreduction of GO and GCEox by CV yields electroreduced GO (erGO) and an electrode of the type erGO/ImAS/GCE. This electrode displays excellent electrocatalytic activity for the oxidation of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Three fully resolved anodic peaks (at ?50 mV, 150 mV and 280 mV vs. Ag/AgCl) are observed during differential pulse voltammetry (DPV). Under optimized conditions, the linear detection ranges are from 30 to 2000 μM for AA, from 20 to 490 μM for UA, and from 0.1 to 5 μM and from 5 μM to 200 μM (two linear ranges) for DA. The respective limits of detection (for an S/N of 3) are 10 μM, 5 μM and 0.03 μM. The GCE modified with erGO and ImAS performs better than a bare GCE or a GCE modified with ImAS only, and also outperforms many other reported electrodes for the three analytes. The method was successfully applied to simultaneous analysis of AA, DA and UA in spiked human urine.
Graphical abstract Differential pulse voltammetric simultaneous determination of ascorbic acid, dopamine and uric acid is achieved on a glassy carbon electrode modified with electroreduced graphene oxide and imidazolium groups, through anodic treatment of glassy carbon and silane chemistry.
  相似文献   

8.
An electrochemical chiral multilayer nanocomposite was prepared by modifying a glassy carbon electrode (GCE) via opposite-charge adsorption of amino-modified β-cyclodextrin (NH2-β-CD), gold-platinum core-shell microspheres (Au@Pts), polyethyleneimine (PEI), and multi-walled carbon nanotubes (MWCNTs). The modified GCE was applied to the enantioselective voltammetric determination of tryprophan (Trp). The Au@Pts enable an effective immobilization of the chiral selector (NH2-β-CD) and enhance the electrochemical performance. Scanning electron microscopy, transmission electron microscopy, UV-vis spectroscopy, FTIR and electrochemical methods were used to characterize the nanocomposite. Trp enantiomers were then determined by differential pulse voltammetry (DPV) (with a peak potential of +0.7 V vs. Ag/AgCl). The recognition efficiency was expressed by an increase in peak height by about 32% for DPV determinations of L-Trp compared to D-Trp in case of a 5 mM Trp solution of pH 7.0. Response was linear in the 10 μM to 5.0 mM concentration range, and the limits of detection were 4.3 μM and 5.6 μM with electrochemical sensitivity of 43.5 μA·μM?1·cm?2 and 34.6 μA·μM?1·cm?2 for L-Trp and D-Trp, respectively (at S/N =?3).
Graphical Abstract Schematic of an electrochemical chiral multilayer nanocomposite composed of multi-walled carbon nanotubes (MWCNTs), polyethyleneimine (PEI), gold-platinum core-shell microspheres (Au@Pt) and amino-modified β-cyclodextrin (NH2-β-CD). It was prepared by modifying a glassy carbon electrode (GCE) for enantioselective voltammetric determination of tryptophan (Trp) enantiomers.
  相似文献   

9.
We describe a chemical exfoliation method for the preparation of MoS2 nanosheets. The nanosheets were incorporated into poly(3,4-ethylenedioxythiophene) (PEDOT) by electrodeposition on a glassy carbon electrode (GCE) to form a nanocomposite. The modified GCE is shown to enable simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Due to the synergistic effect of MoS2 and PEDOT, this electrode displays better properties in terms of electrocatalytic oxidation of AA, DA and UA than pure PEDOT, which is illustrated by cyclic voltammetry and differential pulse voltammetry (DPV). Under optimum conditions and at pH 7.4, the respective sensitivities and best working potentials are as follows: AA: 1.20 A?mM?1?m?2, 30 mV; DA: 36.40 A?mM?1?m?2, 210 mV; UA: 105.17 A?mM?1?m?2, 350 mV. The calculated detection limits for AA, DA and UA are 5.83 μM, 0.52 μM and 0.95 μM, respectively. The modified electrode was applied to the detection of the three species in human urine samples and gave satisfactory results.
Graphical abstract MoS2 nanosheets were prepared by a facile chemical exfoliation method. MoS2 and poly(3,4-ethylenedioxythiophene) nanocomposite modified glassy carbon electrodes were fabricated, which are shown to enable simultaneous determination of ascorbic acid, dopamine and uric acid with high sensitivity and selectivity.
  相似文献   

10.
The authors describe a composite material prepared from carbon nanohorns and poly(2-aminopyridine) that was obtained by electrochemical polymerization of 2-aminopyridine on carbon nanohorns. The material was used to modify a glassy carbon electrode (GCE) to obtain a sensor for non-enzymatic determination of hydrogen peroxide. The modified GCE was characterized by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The modified electrode is shown to display excellent electrical conductivity and catalytic activity towards hydrogen peroxide, mainly due to the large specific surface area of carbon nanohorns, the good electron charge transfer properties resulting from the use of poly(2-aminopyridine), and their synergistic effect. The response of the modified GCE (best operated at a working potential of ?0.45 V vs. SCE) to H2O2 is linear in the 0.05 to 8 mM concentration range. The limits of detection (LOD) and quantitation (LOQ) are 3.6 μM and 12.4 μM, respectively. The electrode is selective, stable and reproducible, this making it a promising tool for non-enzymatic determination of hydrogen peroxide.
Graphical abstract A glassy carbon electrode was modified with carbon nanohorns and poly(2-aminopyridine) to obtain a sensor for H2O2
  相似文献   

11.
An amperometric sensor for L-Cys is described which consists of a glassy carbon electrode (GCE) that was modified with reduced graphene oxide placed in a Nafion film and decorated with palladium nanoparticles (PdNPs). The film was synthesized by a hydrothermal method. The PdNPs have an average diameter of about 10 nm and a spherical shape. The modified GCE gives a linear electro-oxidative response to L-Cys (typically at +0.6 V vs. SCE) within the 0.5 to 10 μM concentration range. Other figures of merit include a response time of less than 2 s, a 0.15 μM lower detection limit (at signal to noise ratio of 3), and an analytical sensitivity of 1.30 μA·μM?1·cm?2. The sensor displays selectivity over ascorbic acid, uric acid, dopamine, hydrogen peroxide, urea, and glucose. The modified GCE was applied to the determination of L-Cys in human urine samples and gave excellent recoveries.
Graphical abstract Spherical palladium nanoparticles (PdNPs) on reduced graphene oxide-Nafion (rGO-Nf) films were synthesized using a hydrothermal method. This nanohybrid was used for modifying a glassy carbon electrode to develop a sensor electrode for detecting L-cysteine that has fast response (less than 2 s), low detection limit (0.15 μM), and good sensitivity (0.092 μA μM-1 cm-2).
  相似文献   

12.
Core-shell Au@Ag nanorods (Ag@GNRs) were synthesized and utilized to construct a voltammetric biosensor for trichloroacetic acid (TCA). The biosensor was prepared by immobilizing hemoglobin (Hb) on a glassy carbon electrode (GCE) that was modified with the Ag@GNRs. Cyclic voltammetry revealed a pair of symmetric redox peaks, indicating that direct electron transfer occurs at the Hb on the Ag@GNR-film. The electron transfer rate constant is as high as 2.32 s?1. The good electrocatalytic capability and large surface area of the Ag@GNR-film is beneficial in terms of electron transfer between Hb and the underlying electrode. The modified GCE, best operated at ?0.4 V (vs. SCE), exhibits electrocatalytic activity toward TCA in the 0.16 μM to 1.7 μM concentration range, with a 0.12 μM detection limit (at an S/N ratio of 3).
Graphical abstract Core-shell Au@Ag nanorods (Ag@GNRs) were synthesized and used to immobilize hemoglobin to construct an effective biosensor for trichloroacetic acid.
  相似文献   

13.
The authors report on an efficient method for the voltammetric sensing of dopamine (DA) by using an electrode modified with alternating monolayers of graphene oxide (GO) and Titanium dioxide (TiO2) nanoparticles anchored GO nanosheets (NSs)). The as-prepared nanostructures were characterized by photoluminescence spectroscopy, powder X-ray diffraction, Raman spectroscopy, FT-IR spectroscopy, transmission electron microscopy, scanning electron microscopy, atomic force microscopy and Energy Dispersive X-ray Analysis (EDAX) techniques. The GO/TiO2 nanocomposite (NC) was deposited on a glassy carbon electrode (GCE), where it displayed an excellent electrocatalytic activity toward the oxidation of DA, owing to its excellent conductivity, high specific surface area, enhanced interfacial contact and more negative zeta potential. Figures of merit include (a) a fast response (5 s), (b) a wide linear range (between 0.2 and 10 μM of DA) (c) a particularly low detection limit (27 nM), (d) a working potential as low as 0.25 V (vs. Ag/AgCl) and (e) a sensitivity of 1.549 μA·μM?1·cm?2. The GO/TiO2/GCE exhibited excellent selectivity over the other interferences as revealed by the differential pulse voltammetric and amperometric studies. The analysis of spiked urine samples resulted in recoveries in the range of 96 to 106%, with RSDs between 3.8 and 5.2%.
Graphical abstract A GO/TiO2 (graphene oxide/titanium dioxide) nanocomposite (NC) was prepared and exploited as electrochemical probes in DA detection. It displays a low detection limit, wide linear range and excellent selectivity.
  相似文献   

14.
Iron sulfides with different atomic ratios were synthesized by a hydrothermal method and used to modify a glassy carbon electrode. The various sulfides were compared to each other for their amperometric response to H2O2. It is found that FeS is the most adequate material. Operated in 0.1 M NaOH solution at 0.4 V (vs. Ag/AgCl), the sensor based on FeS displays a linear response that extends from 0.50 μM to 20.5 mM of H2O2, with a sensitivity of 36.4 μA mM?1 cm?2 and a detection limit of 0.15 μM (at an S/N ratio of 3). The sensor is selective, stable and reproducible.
Graphical abstract Schematic of the synthesis of pomegranate flower-like FeS by a hydrothermal route using ferric chloride and thiourea (SC(NH2)2) as the precursors, and ethanolamine (EA) as the structure-guiding auxiliary agent. A glassy carbon electrode (GCE) modified with this material allows for amperometric sensing of hydrogen peroxide in 0.1 M NaOH solution with a 0.15 μM detection limit. 
  相似文献   

15.
A carbon ceramic electrode (CCE) was fabricated from a composite consisting of sol-gel, ceramic graphite, multi-walled carbon nanotubes and the natural carotenoid crocin. The resulting sensor is shown to allow for the determination of NADH at a rather low working potential of 0.22 V (vs. Ag/AgCl). The heterogeneous electron transfer rate constant (ks) and the surface coverage of the modified electrode are 16.8 s?1 and 22 pmol·cm?2, respectively. The sensor shows excellent and linear response in solutions of pH 7.0 over the 0.5 to 100 μM NADH concentration range, a 0.1 μM detection limit, and a sensitivity of 251.3 nA·μM?1·cm?2.
Graphical abstract Schematic of the preparation of a carbon ceramic electrode modified with electropolymerized crocin on multi-walled carbon nanotubes. This sensor has a strongly decreased oxidation overpotential for NADH.
  相似文献   

16.
We report on the electrodeposition of palladium nanomaterials in choline chloride–based ionic liquid ethaline. A glassy carbon electrode (GCE) was modified with cobalt nanoparticles (acting as sacrificial templates) and a GCE modified with palladium nanoparticles (PdNPs) were fabricated and used to study the electrocatalytic oxidation of hydrazine (N2H4). Scanning electron microscopy revealed that the PdNP modified GCE has a uniform morphology. Zero current potentiometry was used for in-situ probing the changes in interfacial potential of the oxidation of hydrazine. An amperometric study showed that the PdNP modified GCE possesses excellent electrocatalytic activity towards N2H4. The modified electrode displays a fast response (<2 s), high sensitivity (74.9 μA m(mol L?1)?1?cm?2) and broad linearity in the range from 0.1 to 800 μmol L?1 with a detection limit of 0.03 μmol L?1 (S/N?=?3).
Figure
Scheme 1 illustrated the fabrication strategy of the PdNPs/GCE. The first step was the electrodeoposition of CoNPs on the bare GCE. The second step is consist of two processes: (1) A replacement reaction of CoNPs and Pd2+ was happened along with the formation of PdNPs. CoNPs on the electrode were translated into Co2+ and went into the solution. Pd2+ in the solution was translated into PdNPs and adhered to the GCE surface. (2) A certain voltages was applied, the unreacted Pd2+ was further electrochemical deposited on the formed PdNPs nucleus. This is the first attempt to joint chemical replacement action with template assisted electrodeposition.  相似文献   

17.
Various carbon nanomaterials for use in anodic stripping voltammetric analysis of Hg(II), Cu(II), Pb(II) and Cd(II) are screened. Graphene, carbon nanotubes, carbon nanofibers and fullerene (C60), dispersed in chitosan (Chit) aqueous solution, are used to modify a glassy carbon electrode (GCE). The fullerene-chitosan modified GCE (C60-Chit/GCE) displays superior performance in terms of simultaneous determination of the above ions. The electrodes and materials are characterized by electrochemical impedance spectroscopy, cyclic voltammetry, scanning electron microscopy, Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The excellent performance of C60-Chit/GCE is attributed to the good electrical conductivity, large surface area, strong adsorption affinity and unique crystalline structure of C60. Using differential pulse anodic stripping voltammetry, the assay has the following features for Hg(II), Cu(II), Pb(II) and Cd(II), respectively: (a) Peak voltages of +0.14, ?0.11, ?0.58 and???0.82 V (vs SCE); (b) linear ranges extending from 0.01–6.0 μM, 0.05–6.0 μM, 0.005–6.0 μM and 0.5–9.0 μM; and (c), detection limits (3σ method) of 3 nM (0.6 ppb), 14 nM (0.9 ppb), 1 nM (0.2 ppb) and 21 nM (2.4 ppb). Moreover, the modified GCE is well reproducible and suitable for long-term usage. The method was successfully applied to the simultaneous determination of these ions in spiked foodstuff.
Graphical abstract Compared with graphene, carbon nanotubes and carbon nanofibers, an electrode modified with fullerene in chitosan electrode displays superior performance for the simultaneous anodic stripping voltammetric detection of Hg(II), Cu(II), Pb(II) and Cd(II).
  相似文献   

18.
A nanocomposite consisting of cadmium oxide decorated with carbon nanotubes (CdO.CNT NC) was prepared by a wet-chemical technique, and its optical, morphological, and structural properties were characterized by FTIR, UV/Vis, FESEM coupled to XEDS, XPS, and XRD methods. A flat glassy carbon electrode was modified with the nanocomposite to obtain a sensor for L-glutathione (GSH) which displays improved sensitivity, a large dynamic range and good long-term stability. The calibration plot (best acquired at a voltage of 0.5 V) is linear (r 2 = 0.99) in the 0.1 nM to 0.01 M GSH concentration range. The detection limit is as low as 30.0 pM, and the sensitivity is ~9.49 μA?μM?1?cm?2. To the best of our knowledge, this is the first report on the determination of GSH using such a modified glassy carbon electrode (GCE) in combination with I-V method. The GCE was applied to the selective determination of GSH in spiked rabbit serum samples and gave acceptable results.
Graphical abstract A selective glutathione biosensor based on wet-chemically prepared CdO.CNT/Nafion/GCE was fabricated by reliable I-V method and shows good analytical parameters such as high sensitivity, low detection limit, long-term stability, and large dynamic range.
  相似文献   

19.
A sensing device was constructed for the amperometric determination of nitrite. It is based on the use of titanium dioxide (TiO2) nanotubes template with natural fibers and carrying hemin acting as the electron mediator. A glassy carbon electrode (GCE) was modified with the hemin/TNT nanocomposite. The electrochemical response to nitrite was characterized by impedance spectroscopy and cyclic voltammetry. An amperometric study, performed at a working potential of + 0.75 V (vs. Ag/AgCl), showed the sensor to enable determination of nitrite with a linear response in the 0.6 to 130 μM concentration range and with a 59 nM limit of detection. Corresponding studies by differential study voltammetry (Ep?=?0.75 V) exhibited a linear range from 0.6?×?10?6 to 7.3?×?10?5 M with a limit of detection of 84 nM. The sensing device was applied to the determination of nitrite in spiked tap and lake water samples.
Graphical abstract Natural fibers templated synthesis of TNT immobilized hemin as electron transfer mediator for quantitative detection of nitrite with detection limit of 59 nM and good electrochemical sensitivity and the method can be used for quantitative determination of nitrite in water samples.
  相似文献   

20.
The electrogenerated chemiluminescence (ECL) of methionine stabilized gold nanoclusters (Met-AuNCs) is presented. The Met-AuNCs were used to modify a glassy carbon electrode (Met-AuNC/GCE) which is shown to exhibit a stable and strong cathodic ECL signal (at ?1.86 V) when using potassium peroxodisulfate (K2S2O8) as the coreactant in aqueous solution of pH 7.4. Compared to a GCE modified with BSA-AuNCs, the ECL intensity of Met-AuNCs is 5-fold enhanced. The possible ECL reaction mechanism of the ECL system was studied, and a method for the determination of dopamine (DA) was worked out. The modified GCE has a linear response in the 0.1 to 4 μM DA concentration range, with a detection limit of 32 nM (at an S/N ratio of 3). The method was applied to the determination of DA released by PC12 cells. In our perception, the Met-AuNC/GCE provides a viable new tool in ECL based bioanalysis that also paves new routes to the design and application of new sensors.
Graphical abstract The electrochemiluminescence (ECL) sensor based on methionine stabilized gold nanocluster modified glassy carbon electrode (Met-AuNC/GCE) using potassium peroxodisulfate (K2S2O8) as the coreactant in aqueous solution was fabricated for the highly sensitive detection of dopamine (DA) released by cells.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号