首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New copper(II) complexes of asymmetrical tetradentate Schiff bases containing pyrazine have been prepared and thoroughly characterised by elemental analysis, IR and electronic spectroscopy, mass spectrometry and magnetic measurements. Two alternative methods were used in the isolation of the complexes: template synthesis in the preparation of Cu(SalDpyz)ClO4 (HSalDPyz = derived from the condensation of salicylaldehyde, acetylpyrazine and 1,2‐ethylendiamine, 2‐methyl‐1,2‐propylendiamine, 1,2‐phenylendiamine) and direct interaction between copper perchlorate and the corresponding Schiff base, as in the isolation of Cu(AEPyz)(ClO4) (HAEPyz = (Z)‐4‐[2‐{[2‐{[(E)‐1‐(pyrazinyl)ethylidene]amino} ethyl)amino]‐3‐penten‐2‐one)]. [Cu(SalEn)(py)(OClO3)][Cu(SalEn)(py)]ClO4 ( 1 ) (SalEn = 4‐(2‐hydroxyphenyl)‐3‐aza‐3‐buten‐1‐amino, py = pyridine), metal precursor in the preparation of Cu(SalEnpyz)(ClO4) (HSalEnpyz = 2‐{E(2‐{[(E)‐1‐(2‐pyrazinyl)ethylidene]amino}ethyl)imino]methyl}phenol), was crystallographically characterised. The crystal structure of [Cu(AEpyz)]ClO4 ( 2 ) is also reported.  相似文献   

2.
Three novel Schiff base cadmium(II) complexes, derived from the end‐on (μ‐1,1‐N3) azide or end‐to‐end (μ‐1,3‐NCS) thio cyanate bridges and similar tridentate Schiff base ligands, have been synthesized under similar synthetic procedures and their crystal structures determined by X‐ray diffraction methods. They are the dinuclear double end‐on azide‐bridged [Cd2(L1)2(N3)2(μ‐1,1‐N3)2] ( 1 ), the dinuclear double end‐on azide‐bridged [Cd2(L2)2(N3)2(μ‐1,1‐N3)2] ( 2 ), and the dinuclear double end‐to‐end thiocyanate‐bridged [Cd2(L3)2(NCS)2(μ1,3‐NCS)2] ( 3 ), where L1, L2 and L3 are three similar tridentate Schiff bases obtained by condensation of 2‐pyridylaldehyde with N,N‐diethylethane‐1,2‐diamine, of 2‐pyridylaldehyde with N‐isopropylethane‐1,2‐diamine, and of 2‐pyridylaldehyde with N,N‐dimethylpropane‐1,3‐diamine, respectively. Each cadmium(II) centre in the complexes is in a distorted octahedral coordination. There is a crystallographic inversion centre in each of the complexes. The similar small ligands used as the secondary ligands in the preparation of the cadmium(II) complexes with similar Schiff bases can result in similar structures.  相似文献   

3.
Three linear trinuclear Schiff base complexes, {Zn[Zn(CH3COO)(C17H16N2O2)]2} ( 1 ), {Zn[Zn(CH3COO)(C25H20N2O2)]2} ( 2 ), and {Cd[Cd(CH3COO)(C18H18N2O2)]2} ( 3 ), were synthesized for the first time under solvolthermal conditions. Their structures have been characterized by elemental analyses, X-ray single crystal determinations, and infrared spectroscopy. There are three bridges across the M-M atom pairs (M is Zn for 1 and 2 , or Cd for 3 ) in each complex, involving two O atoms of a Schiff base ligand (N,N′-bis(salicylidene)-1, 3-propanediaminate (SALPD2-) for 1 , N, N′-bis(2-hydroxy-naphthalmethenylimino)-1, 3-propanediaminate (NAPTPD2-) for 2 , and N,N′-bis-(salicylidene)-1,4-butanediaminate (SALBD2-) for 3 ), and an O-C-O moiety of a μ-acetato group. In each of the complexes, the central M2+ ion is located on an inversion center and has a distorted octahedral coordination involving four bridging O atoms from two Schiff base ligands in the equatorial plane and one O atom from each bridging acetate group in the axial positions. The coordination around the terminal M2+ ions is irregular square pyramidal, with two O atoms and two N atoms of the Schiff base ligand in the basal plane and one O atom from an acetate group in the apical position. The acetate bridges linking the central and terminal M2+ ions are mutually trans. The M…M distances are 3.050(3) Å in 1 , 3.139(2) Å in 2 , and 3.287(6) Å in 3 .  相似文献   

4.
5.
Four Schiff base complexes, [Cu2(L1)2(μ‐NCS)2] ( 1 ), [Cu2(L2)2(μ‐N3)2] ( 2 ), Cu[Cu(CH3COO)(L3)]2 ( 3 ), and [Zn{Zn(C3H4N2)(L3)}2(NO3)](NO3) ( 4 ) (where L1 = 2‐[(pyridin‐2‐ylmethylimino)methyl]phenol, L2 = 1‐[(pyridin‐2‐ylmethylimino)methyl]naphthalen‐2‐ol, and L3 = bis(salicylidene)‐1, 3‐propanediamine), were synthesized and characterized by elemental analyses, infrared spectroscopy, and single crystal X‐ray determinations. Both 1 and 2 are structurally similar di‐nuclear complexes, which are located at crystallographic inversion centers (with the center of the central Cu2N2 ring). In 1 , each copper atom has a slightly distorted square pyramidal configuration, coordinated by two nitrogen atoms and one oxygen atom from L1 and another two terminal nitrogen atoms from two bridging thiocyanate anions. The Cu···Cu separation is 3.466(3) Å. The structure of 2 is similar to that of 1 , with Cu···Cu separation of 3.368(2) Å. Both 3 and 4 are linear tri‐nuclear complexes. In 3 , the central Cu2+ ion is located on an inversion centre and has a distorted octahedral coordination involving four bridging O atoms from two Schiff base ligands (L3) in the equatorial plane and one O atom from each bridging acetate group in the axial positions. The coordination around the terminal Cu2+ ions is irregular‐square pyramidal, with two O and two N atoms of L3 in the basal plane and one O atom from an acetate group in the apical position. The acetate bridges linking the central and terminal Cu2+ ions are mutually trans. The Cu···Cu separation is 3.009(3) Å. In 4 , the coordination configuration of the central and the terminal zinc atoms are similar to that of the 3 , with Zn···Zn separation of 3.153(4) Å. The three Schiff bases and the corresponding three copper complexes exhibit good antibacterial properties, while the zinc complex 4 has nearly no.  相似文献   

6.
A dinuclear Schiff base RuII complex derived from 5‐chlorosalicylaldehyde and 2‐aminopyridine was synthesized. The structure of the compound was analyzed by mass spectrometry as well as IR, UV/Vis, and 1H NMR spectroscopy, along with chemical analysis,as well as magnetic, cyclovoltammetric and conductivity measurements. Two RuII atoms are octahedrally coordinated by azomethine and pyridine nitrogen atoms from two tridentate monobasic Schiff bases and bridging phenol oxygen atoms. The formula of the complex is [Ru2L2Cl2(Et2NH)(H2O)] [L = N‐(2‐pyridyl)‐5‐chlorosalicylideneimine and Et2NH = isodiethylamine]. The RuII atoms in the dinuclear neutral complex species have different coordination environments, RuN3O2Cl and RuN2O3Cl. Interaction with CT DNA showed moderate hydrophobic binding. The compound demonstrates strong activity against methicillin‐resistant Staphylococcus aureus, methicillin‐sensitive Staphylococcus aureus, and especially Enterococcus faecalis. Microbiological tests showed significant inhibition of growth and ability to kill pathogens, similar or even improved compared to reference antibiotics vancomycin.  相似文献   

7.
Tin(IV) complexes of the series of dianionic terdentate Schiff bases N‐[(2‐pyrroyl)methylidene]‐N′‐tosylbenzene‐1,2‐diamine, (H2L1), N‐[(2‐hydroxyphenyl)methylidene]‐N′‐tosylbenzene‐1,2‐diamine (H2L2) and some R substituted 2‐{[(2‐hydroxyphenyl)imino]methyl}phenols [R = H (H2L3), 4,6‐(OCH3)2 (H2L4), 3‐(OC2H5) (H2L5) and 3,5‐Br2 (H2L6)] have been synthesized. The compounds were obtained by the electrochemical oxidation of a tin anode in a cell containing an acetonitrile solution of the corresponding ligand. The complex [SnL12] was also obtained by reaction of SnCl2·2H2O and H2L1 in methanol in the presence of triethylamine. The crystal structure of the ligand [H2L6] and the complexes [SnL12] (1) , [SnL22] (2) , [SnL32] (3) and [SnL62] (6) were determined by X‐ray diffraction. In the complexes, the tin atom is in an octahedral environment coordinated by two dianionic terdentate ligands. Spectroscopic data for the complexes (IR, 1H and 119Sn NMR and mass spectra) are discussed and related to structural information.  相似文献   

8.
New polynuclear zinc complexes containing tridentate Schiff base ligands were successfully synthesized and fully characterized. The solid‐state structure of the complexes was determined using single crystal X‐ray diffraction. The complexes display a tetranuclear cubane‐like core structure [Zn4O4] and sowed good catalytic activity towards the ring‐opening polymerization (ROP ) of rac‐lactide (rac‐LA ) and ε‐caprolactone (ε‐CL ) under solvent‐free conditions. The polylactic acid (PLA ) obtained from rac‐LA showed isotactic enrichment, as proved by homonuclear decoupled 1H‐NMR analysis. These complexes also showed good activity and superior control towards the ROP of rac‐LA and ε‐CL in the presence of benzyl alcohol as a co‐initiator. Furthermore, kinetic studies demonstrated that the ROP of rac‐LA and ε‐CL has a first order dependence on both monomer (rac‐LA and ε‐CL ) and catalyst concentration.  相似文献   

9.
The UV, excitation, and luminescence spectra of tris(pivaloyltrifluoroacetonato)europium(III) ([Eu(pta)3]; Hpta=1,1,1‐trifluoro‐5,5‐dimethylhexane‐2,4‐dione=HA) were measured in the presence of bis(salicylidene)trimethylenediamine (H2saltn), bis[5‐(tert‐butyl)salicylidene]trimethylenediamine (H2(tBu)saltn), or bis(salicylidene)cyclohexane‐1,2‐diyldiamine (H2salchn), and the corresponding ZnII complexes [ZnB] (B=Schiff base). The excitation and luminescence spectra of the solution containing [Eu(pta)3] and [Zn(salchn)] exhibited much stronger intensities than those of solutions containing the other [ZnB] complexes. The introduction of a tBu group into the Schiff base was not effective in sensitizing the luminescence of [Eu(pta)3]. The luminescence spectrum of [ZnB] showed a band around 450 nm. The intensity decreased in the presence of [Eu(pta)3], reflecting complexation between [Eu(pta)3] and [ZnB]. On the basis of the change in intensity against the concentration of [ZnB], stability constants were determined for [Eu(pta)3Zn(saltn)], [Eu(pta)3Zn{(tBu)saltn}], and [Eu(pta)3Zn(salchn)] as 4.13, 4.9 and 5.56, respectively (log , where =[[Eu(pta)3ZnB]]([[Eu(pta)3]][[ZnB]])?1). The quantum yields of these binuclear complexes were determined as 0.15, 0.11, and 0.035, although [Eu(pta)3Zn(salchn)] revealed the strongest luminescence at 613 nm. The results of X‐ray diffraction analysis for [Eu(pta)3Zn(saltn)] showed that ZnII had a coordination number of five and was bridged with EuIII by three donor O‐atoms, i.e., two from the salicylidene moieties and one from the ketonato group pta.  相似文献   

10.
An unexpected polyhydroxyl‐bridged tetranuclear ZnII complex and a benzoquinone compound derived from metal‐ion promoted reactivity of Schiff base ligands were synthesized and characterized. The reaction of zinc(II) acetate dihydrate with oxime‐type Schiff base ligand HL1 [HL1 = 1‐(3‐((3,5‐dibromosalicylaldehyde)amino)phenyl)ethan‐1‐one O‐benzyl oxime] in methanol, acetone, and acetonitrile resulted in the chemoselective cleavage of the C=N bond of the Schiff base HL1, and then the further addition of acetone to two salicylaldehyde molecules derived from cleavage of the C=N bond in situ α,α double aldol reaction promoted by ZnII ions. The newly formed ligands H4L2 coordinate to four ZnII ions forming a defect‐dicubane core structure [ZnII4(H2L2)23‐OCH3)2(μ‐OCH3)2(CH3OH)2] ( 1 ) bridged exclusively by oxygen‐based ligands. The similar ligand HL3 [HL3 = 1‐(3‐((3,5‐dichlorosalicylaldehyde)amino)phenyl)ethan‐1‐one O‐benzyl oxime)] was employed to react with CdII acetate dihydrate under the same reaction conditions. No aldol addition occurred but a unexpected benzoquinone compound 2,5‐bis(((3‐(1‐((benzyloxy)imino)ethyl)phenyl)imino)methyl)‐1,4‐benzoquinone ( 2 ) formed. The results provided interesting insights into one‐pot routes involving in situ reactions act as a strategy for obtaining a variety of polymeric/polynuclear complexes which are inconvenient to obtain from directly presynthesizing the ligands.  相似文献   

11.
2‐(((2‐Hydroxy‐3‐methoxyphenyl)methylene)amino)‐2(hydroxymethyl)‐1,3‐propanediol (LH4, as abbreviation) reacts with MnCl2 · 4H2O, CoCl2 · 6H2O, and Cu(ClO4)2 · 6H2O to give the new complexes [Mn(LH2)2] ( 1 ), [Co2Cl(H2O)(LH2)2] · 4H2O ( 2 ), and [Cu4(LH2)4(H2O)4] ( 3 ). Complex 1 is formed by the assembly of two molecules of the ligand with one manganese(IV) ion. In the mixed‐valence cobalt complex 2 there is an asymmetry between the coordination spheres of cobalt(II) and cobalt(III). In the tetramer 3 four copper(II) ions attain a distorted tetrahedral configuration surrounded by four molecules of the ligand.  相似文献   

12.
Three new phenolate oxygen bridged transition metal complexes [Zn3(HL1)33‐CH3O)]·(ClO4)2(H2O)3 ( 1 ), [Ni2(HL1)21,1‐N3)(o‐vanillin)]·H2O ( 2 ), [Ni3(HL2)2(PhCOO)2(PhCOOH)2(EtOH)2] ( 3 ) have been synthesized by metal ions and potentially multidentate Schiff base ligands (H2L1 = 2‐((1‐hydroxy‐2‐methylpropan‐2‐ylimino) methyl)‐6‐methoxyphenol; H3L2 = (E)‐1‐((2‐hydroxy‐3‐methoxy‐benzylidene)amino)ethane‐1,2‐diol). All the three complexes 1 , 2 , and 3 have been characterized by elemental analysis, FT‐IR spectroscopy, and single‐crystal X‐ray diffraction studies. Crystal structures reveal that complex 1 is a trinuclear incomplete cubane‐like zinc cluster whereas complex 2 is a dinuclear nickel complex bridged by azide, and compound 3 is a trinuclear nickel complex. The luminescent property for complex 1 and magnetic behaviors for complexes 2 and 3 have been investigated.  相似文献   

13.
Six new nickel(II) complexes of the unsymmetrical Schiff base ligands derived from o‐phenylenediamine were synthesized. These complexes were prepared by template and non‐template reactions of the precursor 3‐acetyl‐4‐[N‐(2'‐aminophenyl)‐amino]‐3‐buten‐2‐one ( HL °) with appropriate o‐hydroxycarbonyl aromatic compounds, aromatic 1, 3‐oxo aldehydes and 1, 3‐diketones. The nickel(II) compounds were characterized by analytical and spectroscopic methods. Crystal structure of complex [3‐acetyl‐(6, 7)‐benzo‐8‐salicylidene‐5, 8‐diazahepta‐3‐ene‐2‐onato(2‐)]nickel(II) ( NiL 1) has been determined by X‐ray powder diffraction method, revealed that the molecules are almost flat, and there are no forces other than van der Waals interactions between molecules. The structure was solved by global optimisation technique and refined by the Rietveld method, obtained RF and Rwp are 11.6 and 17.4%, respectively. The synthesis of a new unsymmetrical nickel(II) tetraazamacrocyclic complex is also described.  相似文献   

14.
Four Schiff base complexes, [Zn2L2(NCS)2] ( 1 ), [Cd2L2(NCS)2]n ( 2 ), [Zn4L2(N3)2Cl4(OH2)(CH3OH)] ( 3 ), and [Cu4L2(N3)2Cl4(OH2)(CH3OH)] ( 4 ) (where L = 2‐[(2‐dimethylaminoethylimino)methyl]phenol), were synthesized and characterized by elemental analyses, infrared spectroscopy, and single crystal X‐ray determinations. Both 1 and 2 are structurally similar polynuclear complexes. In 1 , each Zn atom has a slightly distorted square‐pyramidal coordination configuration. In the basal plane, the Zn atom is coordinated by one O and two N atoms of one L, and by one O atom of another L. The apical position is occupied by one terminal N atom of a coordinated thiocyanate anion. The Zn···Zn separation is 3.179(3) Å. While in 2 , the Cd1 atom is six‐coordinated in an octahedral coordination. In the equatorial plane, the Cd1 atom is coordinated by one O and two N atoms of one L, and by one O atom of another L. The axial positions are occupied by the terminal N and S atoms from two bridging thiocyanate anions. The coordination of Cd2 atom in 2 is similar to those of the zinc atoms in 1 . The Cd···Cd separation is 3.425(2) Å. Both 3 and 4 are novel tetra‐nuclear complexes. Each metal atom in the complexes has a slightly distorted square‐pyramidal coordination. The arrangements of the terminal metal atoms are similar, involving one O and two N atoms of one L ligand and one bridging Cl atom defining the basal plane, and one O atom of a coordinated water molecule or MeOH molecule occupying the apical position. The coordinations of the central metal atoms are also similar. The basal plane of each metal atom involves one O atom of one L ligand, one terminal Cl atom, and two terminal N atoms from two bridging azide groups. The apical position is occupied by a bridging Cl atom which also acts as a basal donor atom of the terminal metal atom. The Schiff base ligand and the four complexes showed high selectivity and antibacterial activities against most of the bacteria.  相似文献   

15.
16.
The heptadentate Schiff base H3L reacts with cobalt(II) acetate in methanol to form the discrete dinuclear complex Co2L(OAc)2(OMe)(H2O)2 ( 1 ·2H2O). The reaction of 1 ·2H2O with NMe4OH·5H2O in methanol gives rise to displacement of the acetate by methanolate groups, yielding Co2L(OMe)3(H2O) ( 2 ·1H2O). Recrystallizations of the Schiff base, 1 ·2H2O and 2 ·H2O in different solvents, produce single crystals of H3L, 1 ·2.5H2O and 2 ·2MeOH, respectively. The crystal structures of 1 ·2.5H2O and 2 ·2MeOH show the cobalt atoms double bridged by and endogenous phenol oxygen atom and an exogenous methanolate oxygen donor, giving rise to Co2O2 cores with Co···Co distances of ca. 2.87 Å.  相似文献   

17.
New dinuclear pentacoordinate molybdenum(V) complexes, [Mo2VO3L2] [L = thiosemicarbazonato ligand: C6H4(O)CH:NN:C(S)NHR′ and C10H6(O)CH:NN:C(S)NHR′; R′ = H, CH3, C6H5) were obtained either by oxygen atom abstraction from MoVIO2L with triphenylphosphine or by using [Mo2O3(acac)4] in the reaction with the corresponding ligands H2L. Crystal and molecular structure of [Mo2O3{C6H4(O)CH:NN:C(S)NHC6H5}2] · CH3CN has been determined by the single‐crystal X‐ray diffraction method.  相似文献   

18.
Bimetallic and trimetallic complexes of stoichiometry [M(acacen)M′Y2], [M(sacacen)M′Y2], and {[M(acacen)]2M′Y2} have been prepared by reaction of the appropriate square-planar Schiff base metal complex with various secondary metal salts in toluene and/or absolute ethanol. Systems which are reported here include those where M = Cu(II); M′ = Cu(II), Ni(II), Co(II), Mn(lI) and Zn(II); Y? = Cl?, Br?, and NO3 ?. Trinuclear complexes have been isolated only for {[Cu(acacen)]2M′(NO3)2} where M′ = Cu(lI) or Mn(II); binuclear complexes result from all other combinations. The geometry of the chelated Cu(II) ion is square-planar in the bimetallic complexes and possibly square-pyramidal in the trimetallic compounds, while that of the secondary metal ion depends on the coordination preference of M′, the nature of Y? and whether the bridging donor atoms are oxygen or sulfur. Probable structures of the new polynuclear complexes have been deduced from spectral, conductivity and magnetic measurements.  相似文献   

19.
Alkane elimination reactions of the tethered bis(urea) proligand 1,4‐(tBuNHCONH)2‐C4H8 ( 1 ) with ZnR2 (R = Me, Et, nPr) yielded trimetallic zinc complexes [RZn‐1,4‐(tBuNHCON)2‐C4H8]2Zn [R = Me ( 2 ), Et ( 3 ), and nPr ( 4 )]. 2 – 4 were characterized by heteronuclear NMR (1H, 13C) and IR spectroscopy, elemental analysis, and single‐crystal X‐ray diffraction.  相似文献   

20.
Monomeric zinc(II) and mercury(II) complexes containing tripodal nitrogen donor ligand 2,6‐bis(3,4,5‐trimethyl‐N‐pyrazolyl)pyridine (btmpp) were synthesized, and characterized by elemental and spectroscopic (IR, UV/Vis) analyses, TG‐DTA and single‐crystal X‐ray diffraction studies. X‐ray analyses of the complexes [Zn(btmpp)Cl2] ( 2 ) and [Hg(btmpp)(SCN)2] ( 3 ) showed that both structures crystallize in space group P21/c with a = 7.9722(6), b = 18.3084(13), c = 13.3117(9) Å and Z = 4 for 2 and a = 8.7830(3), b = 21.1489(7), c = 12.0682(4) Å and Z = 4 for 3 . Both monomeric units contain pentacoordinate metal ions in distorted square‐pyramidal arrangement. The structures of complexes 2 and 3 were also computed with DFT methods at B3LYP/LanL2DZ level and are in good agreement with the experimental values obtained from X‐ray analysis. The NPa charge distributions, HOMO–LUMO gaps, and dipole moments for 1 , 2 , and 3 were also reported. Natural bond orbital analyses were performed to reveal local charges and charge transfers in 1 , 2 , and 3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号