首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expanded 5-(hetero)aryl-thien-2-yl substituted 3-ethynyl quinoxaline dyes with variable substitution pattern on the peripheral thiophene ring were synthesized in moderate to very good yields by Suzuki and Buchwald-Hartwig coupling of the corresponding brominated 3-ethynyl quinoxalines. Dumbbell-shaped bis(thienyl 3-ethynyl quinoxalines) are also accessible by the Suzuki protocol. The photophysical properties were investigated by UV and fluorescence spectroscopy. Most of the obtained compounds display fluorescence in solution and some of them also in the solid state. Additionally, tuning of the emission color of the quinoxaline based chromophores can be conveniently accomplished by the remote substituent group. The determined absorption and emission maximum as well as the Stokes shifts strongly correlate with Hammett σp+parameters. Besides,photophysical properties of selected derivatives in the solid state, biphasic solutions, and PMMA films, along with their relationships, are comparatively investigated. Moreover, two 5-(hetero)aryl-thien-2-yl substituted 3-ethynyl quinoxaline dyes are aggregation induced emission(AIE) chromophores indicated by restriction of molecular motions. A covalently restricted 3-ethynyl quinoxaline supports that the inhibition of molecular rotation is responsible for the significant enhancement of fluorescence in acetonitrile/water mixtures.  相似文献   

2.
The reaction of ethyl‐3‐mercaptoquinoxaline‐2‐carboxylate with phenacyl bromide, ethyl chloroacetate, chloroacetonitrile or chloroacetone furnished the corresponding 3‐hydroxy thieno[2,3‐b]quinoxaline. 2‐Cyano‐3‐hydroxythieno[2,3‐b]quinoxaline and 2‐acetyl‐3‐hydroxythieno[2,3‐b]quinoxa line were employed as precursors in the synthesis of some novel furo[2′,3′:4,5]thieno[2,3‐b]quinoxaline, pyrano[2′,3′:4,5]thieno[2,3‐b]quinoxaline and other heterocyclic systems fused with thieno[2,3‐b]quinoxalines. The antibacterial and antifungal activities of some the synthesised compounds were studied.  相似文献   

3.
Electrophilic palladium-catalyzed cycloisomerization of brominated aryl propiolates produces brominated coumarins. The brominated coumarins can be diversified by reduction of the Pd(II) catalyst to Pd(0) followed by Suzuki, Sonogashira, Heck, or Hartwig-Buchwald coupling. Thus, a single loading of precatalyst can be used to conduct sequential reactions, allowing the synthesis of functionalized coumarins. Extension of this methodology toward the synthesis of coumarin libraries is discussed.  相似文献   

4.
This is the first reported, unconventional, efficient strategy for the synthesis of quinoxaline from 2 to iodo benzoic acid and sodium azide in presence of organo Cu (II) catalyst. Herein, a very simple, versatile one pot multi-component protocol for the synthesis of biologically active compound, quinoxaline has been described via Schmidt reaction and the nucleophilic substitution reaction. The isolated compounds were characterized by 1H NMR, 13C NMR. Our reported organo catalyst was characterized by single crystal XRD, SEM.  相似文献   

5.
The unexpected substitution of fluorine atoms and phenoxy groups attached to quinoxaline or benzofuroxan rings is described. The synthesis of 2-benzyl- and 2-phenoxy-3-methylquinoxaline 1,4-di-N-oxide derivatives was based on the classical Beirut reaction. The tendency of fluorine atoms linked to quinoxaline or benzofuroxan rings to be replaced by a methoxy group when dissolved in an ammonia saturated solution of methanol was clearly demonstrated. In addition, 2-phenoxyquinoxaline 1,4-di-N-oxide derivatives became 2-aminoquinoxaline 1,4-di-N-oxide derivatives in the presence of gaseous ammonia.  相似文献   

6.
A novel efficient synthesis of 2-styrylthiazolo[4,5-b]quinoxaline based fluorescent dyes was achieved by the condensation of 2-alkylthiazolo[4,5-b]quinoxaline with selected 4-N,N-dialkylamino-substituted aryl-aldehydes or hetarylaldehydes in the presence of piperidine or acid anhydride. The coloristic, fluorophoric and dyeing properties of these dyes were studied.  相似文献   

7.
This paper describes the synthesis of 1-hydrazinopyridazino[4,5-b]quinoxaline ( 10 ), tetrazolo[4,3-b]pyridazino[4,5-b]quinoxaline ( 11 ) and some 1,2,4-triazolo[4,3-b]pyridazino[4,5-b]quinoxalines 13 . Starting with 2-ethoxycarbonyl-3-methylquinoxaline 1,4-dioxide ( 1 ), 1,2-dihydro-1-oxopyridazino[4,5-b]quinoxaline ( 5 ) was prepared by three different ways: (a) chlorination of 1 in acetic acid gave 2-ethoxycarbonyl-3-dichloromethylquinoxaline 1,4-dioxide, which reacts with an excess of hydrazine to give about 60% of 5 ; (b) oxidation of 1 with selenium dioxide gave 90% of 2-ethoxycarbonyl-3-formylquinoxaline 1,4-dioxide ( 3 ), which reacts with hydrazine to give 5 (63%); (c) compound 3 was treated with hydrazine to give 1,2-dihydro-1-oxopyridazino-[4,5-b]quinoxaline 1,4-dioxide ( 4 ) (70%), which by reduction with sodium dithionite gave 5 (80%). Compound 5 reacts with phosphorus pentasulfide or the Lawesson reagent to give 1,2-dihydro-1-thiocarbonylpyridazino[4,5-b]quinoxaline ( 9 ), which treated with hydrazine gave 5 (80%). This last compound reacts with nitrous acid to give 11 . Some hydrazones 12 from 10 are described. Heating the aldehyde hydrazones 12a,c,d with dimethylsulfoxide some 1,2,4-triazolo[4,3-b]pyridazino[4,5-b]quinoxalines 13 were obtained. Compound 13a was also obtained in the reaction of 10 with benzoyl chloride. Reaction of 3 with phenylhydrazine gave 1,2-dihydro-1-oxo-2-phenylpyridazino[4,5-b]quinoxaline ( 6 ). Reactions of 5 with acetic anhydride and dimethylsulfate gave, respectively, 1-acetoxypyridazino[4,5-b]quinoxaline ( 8 ) and 1,2-dihydro-1-oxo-2-methylpyridazino-[4,5-b]quinoxaline ( 7 ). All the compounds were characterized by elemental analysis and 1H-nmr spectra. Compounds 5 and 10 showed antihypertensive activity in rats.  相似文献   

8.
We report herein an original and rapid synthesis of substituted 2-tosyl-1,2,3,4-tetrahydropyrido[3,4-b]quinoxaline derivatives by TDAE strategy from 2,3-bis(bromomethyl)quinoxaline and N-(toluenesulfonyl)benzylimines.  相似文献   

9.
The first syntheses of indolopterin and indoloquinoxaline, two important and dissimilar diheterocycles linking C-2 of indole with C-6 of pterin (significant positions for showing biological activity), and quinoxaline, respectively, have been achieved based on two classical reactions. The introduction of a keto methyl group on to the 6-position of pterin and quinoxaline followed by Fischer indole synthesis led to these target diheterocycles. These indole-substituted diheterocycles will significantly increase the electron density on the pterin-5-N and quinoxazoline-2-N, which may change the redox properties of pterin and quinoxaline, and also the electron-withdrawing pterin or quinoxazoline should make the indole NH more acidic.  相似文献   

10.
A new efficient synthesis of 2‐styryl‐6,7‐dichlorothiazolo[4,5‐b]quinoxaline based fluorescent dyes was achieved by the condensation of 2‐methyl‐6,7‐dichlorothiazolo[4,5‐b]quinoxaline with selected 4‐N,N‐dialkylaminoarylaldehydes and heteroarylaldehydes in the presence of piperidine. The coloristic, fluo‐rophoric, and dyeing properties of these dyes were studied.  相似文献   

11.
The literature survey highlights spectra and biological activity of transition metal complexes derived from Schiff bases of quinoxaline. The extensive studies of synthesis, spectral, structural characterization, and biological activities of the metal complexes with heterocyclic Schiff bases of quinoxaline are reviewed.  相似文献   

12.
The transformations that occur during the reduction of 1-(o-nitrophenyl)-2-formylimidazole with sodium hydrosulfite in the presence of ammonia were studied. The 4-amino derivatives of imidazo[1,2-a]quinoxaline and the bisulfite derivatives of 1-(o-aminophenyl)-2-formylimidazole are formed along with the previously described imidazo[1,2-a]quinoxaline. 4-Aminoimidazo[1,2-a]quinoxaline was also obtained by alternative synthesis by amination of imidazo-[1,2-a]quinoxaline with sodium amide in dimethylaniline. The major product of the transformation is 4,4-bisimidazo[1,2-a]quinoxalyl when the reaction is carried out in xylene.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 416–418, March, 1972.  相似文献   

13.
Rutile phase of TiO2 nanoparticles were readily prepared and identified as an efficient heterogeneous catalyst for the synthesis of a library of quinoxaline derivatives by condensation reaction of isatin derivatives with o-phenylenediamine under solvent-free conditions. The presented method is mild, environmentally friendly, inexpensive and highly effective to give the products in good to excellent yields. The recyclability of the catalyst is another emphasis of proposed methodology.  相似文献   

14.
A novel efficient synthesis of fluorescent, fused quinoxalines was achieved. 6-Triazolylthiazolo[4,5-b]quinoxalines were synthesized by the diazotisation of 6-amino-2-methylthiazolo[4,5-b]quinoxaline and coupling with selected aromatic amines followed by air oxidation. Diazotised aryl amines were coupled with 6-amino-2-methylthiazolo[4,5-d]quinoxaline followed by subsequent air oxidation afforded 1,2,3-triazolo[5,4-f]quinoxalino[2,3-d]thiazoles. 6-Amino-2-methylthiazolo[4,5-b]quinoxaline was condensed with conjugated enol ethers followed by cyclization in dowtherm resulted in thiazolo[4,5-b]quinoxalino[6,5-b]pyridine.  相似文献   

15.
A new domino strategy for efficient synthesis of highly functionalized quinoxaline derivatives via [4 + 2] heterocyclization involving ring‐opening of oxirane process has been developed. The reaction promoted by Cs2CO3 was easy to perform in a simple operation from common and inexpensive starting materials. The bisfunctionalization of quinoxaline framework including C2 benzylation and C3 arylation was readily achieved in domino fashion that involved the cleavage of three C–O bonds of 1,3‐diaryl‐2,3‐epoxypropan‐1‐one.  相似文献   

16.
A simple, inexpensive, environmentally friendly and efficient route for the rapid and efficient synthesis of quinoxaline derivatives using pentafluorophenylammonium triflate (PFPAT) as a catalyst is described. Various quinoxaline derivatives were synthesized in good to excellent yields. The preparation of PFPAT catalyst from simple and readily available starting materials makes this method more affordable.  相似文献   

17.
A method of synthesis of quinoxaline by α-ketothioanilide ando-phenylenediamine is described in this paper.  相似文献   

18.
A novel, efficient total synthesis of a series of pterindithiolenes (15, 16, 17 and 18) [(5,6-dihydro-[1,4]dithiin or 6,7-dihydro-5H-[1,4]dithiepin systems respectively for six and seven membered dithiolenes] has been reported. The six membered quinoxaline thioketal 9 and seven membered quinoxaline dithiolene 11 have also been synthesized from quinoxaline acetylenic alcohol 5 and the corresponding acetylenic ketone 10 respectively. The synthesis of five membered pterin thioketals 12 and 13 along with the conversion of 13 to the dithiolene 14 by the reaction with NBS is also reported.  相似文献   

19.
The bromination of 2,1,3-benzothiadiazoles in 47% hydrobromic acid at elevated temperature has led to a general preparative method for the synthesis in high yield of otherwise difficulty accessible brominated 2,1,3-benzothiadiazoles. The typical addition reaction is apparently eliminated under these reaction conditions and substitution takes place exclusively. Bromination of 2,1,3-benzothiadiazole occurs successively at positions 4 and 7. 4-Substituted 2,1,3-benzothia-diazoles are selectively brominated at position 7. 5-Bromo- and 5-methyl-2,1,3-benzothiadiazole are brominated consecutively at positions 4 and 7.  相似文献   

20.
Chou TC  Lin KC  Kon-no M  Lee CC  Shinmyozu T 《Organic letters》2011,13(17):4588-4591
The development of an expedient synthesis toward quinoxaline ring-embedded polyacenoquinone esters with the generic structure A is demonstrated by the synthesis of penta- and hexacenoquinone esters. They are potential n-type small molecules, capable of undergoing successive reductions and self-assembling in face-to-face π-stacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号