首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
肖宇玲  何济洲  程海涛 《物理学报》2014,63(20):200501-200501
研究了单势垒锯齿势中,布朗粒子在外力和空间周期温度场作用下构成的布朗热机的热力学性能.考虑布朗粒子动能变化以及高、低温库之间热漏引起的热流.用Smoluchowski方程描述粒子在黏性介质中的动力学特性,推导出高、低温库的热流以及热机功率和效率的解析表达式.通过数值计算分析势垒高度、外力和温库边界对热机性能的影响.研究表明:由于动能变化和热漏引起的不可逆热流的存在,布朗热机为不可逆热机,热机的功率效率特性为一闭合的关系曲线;势垒边界与温库边界重合时,热机的功率达到最大值;通过改变温库边界的位置,可以在一定范围内提高热机的效率,但同时减小了热机的输出功率.  相似文献   

2.
A Brownian particle moving in the vicinity of a generic potential minimum under the influence of dissipation and thermal noise from two different heat baths is shown to act as a minimal heat engine, generating a systematic torque onto the physical object at the origin of the potential and an opposite torque onto the medium generating the dissipation.  相似文献   

3.
We discuss various properties of a homogeneous random multifractal process, which are related to the issue of scale correlations. By design, the process has no built-in scale correlations. However, when it comes to observables like breakdown coefficients, which are based on a coarse-graining of the multifractal field, scale correlations do appear. In the log-normal limit of the model process, the conditional distributions and moments of breakdown coefficients reproduce the observations made in fully developed small-scale turbulence. These findings help to understand several puzzling empirical details, which have been extracted from turbulent data already some time ago.  相似文献   

4.
5.
Current,maximum power and optimized efficiency of a Brownian heat engine   总被引:1,自引:0,他引:1  
A microscopic heat engine is modeled as a Brownian particle in a sawtooth potential (with load) moving through a highly viscous medium driven by the thermal kick it gets from alternately placed hot and cold heat reservoirs. We found closed form expression for the current as a function of the parameters characterizing the model. Depending on the values these model parameters take, the engine is also found to function as a refrigerator. Expressions for the efficiency as well as for the refrigerator performance are also reported. Study of how these quantities depend on the model parameters enabled us in identifying the points in the parameter space where the engine performs with maximum power and with optimized efficiency. The corresponding efficiencies of the engine are then compared with those of the endoreversible and Carnot engines.Received: 28 December 2003, Published online: 28 May 2004PACS: 05.40.Jc Brownian motion - 05.60.-k Transport processes - 05.70.-a ThermodynamicsMesfin Asfaw: Present address: Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany  相似文献   

6.
A computer simulation of the turbocharged turbocompound diesel engine system is used to study the effect of combustion chamber insulation on the performance of low heat rejection system configurations with exhaust heat recovery. The analysis is carried out for zirconia coatings of various thickness applied on the cylinder head and piston. It is found that an intercooled turbocompound engine derives a modest thermal efficiency benefit from insulation, e.g. 4.3% improvement at a 60% reduction in heat loss. The addition of Rankine compounding can improve the thermal efficiency of the turbocompound engine by 10–14%, depending on the level of insulation and the system configuration. Furthermore, Rankine compounding can make the otherwise inferior performance of a non-intercooled engine match the performance of an intercooled engine. Finally, use of an insulating material of low conductivity and low heat capacity can increase the thermal efficiency benefits, but at the expense of increased component thermal loading.  相似文献   

7.
程海涛  何济洲  肖宇玲 《物理学报》2012,61(1):10502-010502
研究了周期性双势垒锯齿势中, 布朗粒子在外力作用下沿空间坐标方向交替地和高、低温热库接触构成的布朗热机的热力学性能. 考虑布朗粒子动能的变化以及高、 低温库之间热漏的存在, 通过数值计算分析势垒高度、势比、外力等参数对布朗热机效率的影响. 研究表明:当考虑热漏时, 布朗热机始终是不可逆的, 效率小于卡诺效率; 并且当热漏很小时, 势比的增大在一定程度上可提高布朗热机的效率; 其功率与效率之间的关系曲线为闭合线. 当不考虑热漏时, 其功率与效率之间的关系曲线为开型线, 但由于布朗粒子动能的变化引起的不可逆热流, 热机的效率依然小于卡诺效率. 关键词: 布朗热机 双势垒锯齿势 热漏 热力学性能  相似文献   

8.
Brownian particles moving in a spatially asymmetric but periodic potential (ratchet), with an external load force and connected to an alternating hot and cold reservoir, are modeled as a microscopic heat engine, referred to as the Brownian heat engine. The heat flow via both the potential energy and the kinetic energy of the particles are considered simultaneously. The forward and backward particle currents are determined using an Arrhenius' factor. Expressions for the power output and efficiency are derived analytically. The maximum power output and efficiency are calculated. It is expounded that the Brownian heat engine is always irreversible and its efficiency cannot approach the efficiency ηC of the Carnot heat engine even in quasistatic limit. The influence of the main parameters such as the load, the barrier height of the potential, the asymmetry of the potential and the temperature ratio of the heat reservoirs on the performance of the Brownian heat engine is discussed in detail. It is found that the Brownian heat engines may be controlled to operate in different regions through variation of some parameters.  相似文献   

9.
Recent evidence suggests that the multiple charge-separation pathways can contribute to photosynthetic performance.In this work,the influence of coupled-dipoles on photosynthetic performance was investigated in a two-charge separation pathways quantum heat engine(QHE) model.And the population dynamics of the two coupled sites,j-V characteristics,and power involving this photosynthetic QHE model were evaluated for the photosynthetic performance.The results illustrate that the photosynthetic performance can be greatly enhanced but quantum interference is deactivated by the coupleddipoles between the two-charge separation pathways.However,the photosynthetic performance can also be promoted by the deactivated quantum interference owing to the coupled-dipoles.It is a novel role of the coupled-dipoles in the energy transport process of biological photosynthetic,and some artificial strategies may be motivated by this photosynthetic QHE model in the future.  相似文献   

10.
A new model of micro-/nanoscaled heat engines consisting of two thin long tubes with the same length but different sizes of cross section, which are filled up with ideal quantum gases and operated between two heat reservoirs, is put forward. The working fluid of the heat engine cycle goes through four processes, which include two isothermal processes and two isobaric processes with constant longitudinal pressure. General expressions for the power output and efficiency of the cycle are derived, based on the thermodynamic properties of confined ideal quantum gases. The influence of the size effect on the power output and efficiency is discussed. The differences between the heat engines working with the ideal Bose gas and Fermi gas are revealed. The performance of the heat engines operating at weak gas degeneracy and high temperatures is further analyzed. The results obtained are more general and significant than those in the current literature.  相似文献   

11.
针对新风空调机组,采用倾角为15°的分离式热管用于显热回收.研究充液率,迎面风速及空气进口温度对显热效率的影响,分析了其影响规律.研究表明,采用热管空调机组设计风速范围内,充液率介于66%~75%时,其换热效率最高.迎面风速较低时,空气进口温度介于34℃~36℃,其显热效率较高.因此,采用分离式热管机组适合用于高热地区...  相似文献   

12.
We propose a new model of the three-terminal quantum dot hybrid thermoelectric heat engine in which the electrons transfer between two electronic terminals at different temperatures and chemical potentials through two coupled single-level quantum dots. Based on master equation we derive the expressions for the output power and the efficiency. The working region of the hybrid heat engine is determined according to the first and second law of thermodynamics. The performance characteristic curves are plotted and the optimal performance parameters are obtained. Finally, the influence of the non-radiative effect on the optimal performance parameters is discussed in detail.  相似文献   

13.
Luo EC  Ling H  Dai W  Yu GY 《Ultrasonics》2006,44(Z1):e1507-e1509
In this paper, an experimental study of the effect of the resonator shape on the performance of a traveling-wave thermoacoustic engine is presented. Two different resonators were tested in the thermoacoustic-Stirling heat. One resonator is an iso-diameter one, and the other is a tapered one. To have a reasonable comparison reference, we keep the same traveling-wave loop, the same resonant frequency and the same operating pressure. The experiment showed that the resonator shape has significant influence on the global performance of the thermoacoustic-Stirling heat engine. The tapered resonator gives much better performance than the iso-diameter resonator. The tapered resonator system achieved a maximum pressure ratio of about 1.3, a maximum net acoustical power output of about 450 W and a highest thermoacoustic efficiency of about 25%.  相似文献   

14.
将CuO纳米颗粒用于空调机组的嵌入式热管中,研究充液率,迎面风速及空气进口温度对显热效率的影响。研究表明,采用嵌入式热管的空调机组在其设计风速范围内,进口温度为34℃时,充液率为66%,其显热效率最高;迎面风速较低时,显热效率较高,随着CuO纳米颗粒体积浓度的从1%增加至3%时,显热效率逐渐升高;空气进口温度超过38℃,显热效率急剧降低。  相似文献   

15.
Mesfin Asfaw 《Physica A》2007,384(2):346-358
We model a tiny heat engine as a Brownian particle that moves in a viscous medium in a sawtooth potential (with or without load) assisted by alternately placed hot and cold heat baths along its path. We find closed form expression for the steady-state current as a function of the model parameters. This enables us to deal with the energetics of the model and evaluate either its efficiency or its coefficient of performance depending upon whether the model functions either as a heat engine or as a refrigerator, respectively. We also study the way current changes with changes in parameters of interest. When we plot the phase diagrams showing the way the model operates, we not only find regions where it functions as a heat engine and as a refrigerator but we also identify a region where the model functions as neither of the two.  相似文献   

16.
We study the efficiency of one-dimensional thermally driven Brownian ratchets or heat engines. We identify and compare the three basic setups characterized by the type of the connection between the Brownian particle and the two heat reservoirs: (i) simultaneous, (ii) alternating in time, and (iii) position dependent. We make a clear distinction between the heat flow via the kinetic and the potential energy of the particle, and show that the former is always irreversible and it is only the third setup where the latter is reversible when the engine works quasistatically. We also show that in the third setup the heat flow via the kinetic energy can be reduced arbitrarily, proving that even for microscopic heat engines there is no fundamental limit of the efficiency lower than that of a Carnot cycle.  相似文献   

17.
采用环路热管式空调机组用于新风的预冷及再热,减少了表冷器的冷量及降低再热设备的能耗。文中研究了充液率、倾角对热管蒸发段和冷凝段温差及显热效率的影响。研究表明,环路热管式空调机组,充液率介于55%~75%时,热管蒸发段和冷凝段温差较大;随着倾角的增加,热管蒸发段和冷凝段温差也逐渐增大,显热效率也随之较高。因此,采用环路热管式空调机组可降低能耗,提高人体的热舒适性,可用于热带及亚热带地区,最大限度回收热量。  相似文献   

18.
Bo Xiao  Renfu Li 《Physics letters. A》2018,382(42-43):3051-3057
We investigate the finite time performance of reciprocating quantum Otto heat engine coupled to squeezed hot reservoir. We emphasize the converged limit cycle where each stroke is performed in finite time. To fully exploit the quantum availability provided by the squeezed bath, an optimal frequency protocol in the work extraction stroke is explicitly proposed. The power output is optimized with respect to the hot and cold isochore times. Thermodynamic analysis shows that for a wide range of squeezing parameters, efficiency at maximum power exceeds the generalized Curzon–Ahlborn efficiency defined by the effective temperature of the squeezed bath.  相似文献   

19.
A pair of systems at different temperatures is a classic environment for a heat engine, which produces work during the relaxation to a common equilibrium. It is generally believed that a direct interaction between the two systems will always decrease the amount of the obtainable work, due to inevitable dissipation. Here a situation is reported where, in some time window, work can be gained due to the direct coupling, while dissipation is relevant only for much larger times. Thus, the amount of extracted work increases, at the cost of a change of the final state.  相似文献   

20.
《Physics letters. A》1987,124(8):421-425
We will study the effect of inhomogeneity on intermittent properties of chaos in a two-coupled system. The power spectrum and the time average of a dynamical variable are numerically calculated. These quantities are analyzed phenomenologically with the help of various concepts developed in the equilibrium critical phenomena. A scaling law holds for the time average of the dynamical variable similarly as the magnetization under magnetic field in the critical magnetic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号