首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The soft deposition of Ni13 and Cu13 clusters on Ni(111) and Cu(111) surfaces is studied by means of constant-energy molecular-dynamics simulations. The atomic interactions are described by the Embedded Atom Method. It is shown that the shape of the nickel clusters deposited on Cu(111) surfaces remains rather intact, while the copper clusters impacting on Ni(111) surfaces collapse forming double and triple layered products. Furthermore, it is found that for an impact energy of 0.5 eV/atom the structures of all investigated clusters show the lowest similarity to the original structures, except for the case of nickel clusters deposited on a Cu(111) surface. Finally, it is demonstrated that when cluster and substrate are of different materials, it is possible to control whether the deposition results in largely intact clusters on the substrate or in a spreading of the clusters. This separation into hard and soft clusters can be related to the relative cohesive energy of the crystalline materials.  相似文献   

2.
The ABN ?1 chain is a system that consists of repeating a unit cell withN siteswhere between the A and B sites there is an energy difference ofλ. Weconsidered bosons in these special lattices and took into account the kinetic energy, thelocal two-body interaction, and the inhomogenous local energy in the Hamiltonian. We foundthe charge density wave (CDW) and superfluid and Mott insulator phases, and constructedthe phase diagram for N =2 and 3 atthe thermodynamic limit. The system exhibited insulator phases for densitiesρ =α/N, with α being an integer. Weobtained that superfluid regions separate the insulator phases for densities larger thanone. For any N value, we found that for integer densitiesρ, thesystem exhibits ρ +1 insulator phases, a Mott insulator phase, and ρ CDW phases. Fornon-integer densities larger than one, several CDW phases appear.  相似文献   

3.
The properties of C60 adsorbed on Cu(111) have been studied using low temperature scanning tunnelling microscopy and spectroscopy. In the electronic spectrum of the molecule, we observe features that can be assigned to molecular orbitals. The LUMO level is split into two states, as a consequence of the charge transfer from the substrate to the carbon cage. The data from the inelastic electron tunnelling spectroscopy reveal two peaks that can be assigned to the intramolecular vibrational modes of the C60 cage. We demonstrate also controlled manipulation of single molecules. The plot of the tip height, recorded during the manipulation process, indicates that the C60 is pushed along the surface. PACS 68.37.Ef; 73.61.Wp; 68.43.Pq; 82.37.GK; 68.43.-h  相似文献   

4.
A comprehensive study of the magnetic properties, magnetic viscosity, and microstructure of Gd(Co,Cu)5 intermetallic compounds has been carried out using vibrating-coil magnetometry and atomic force microscopy. High-quality images of liquation inhomogeneities at the basal planes of Gd(Co1 − x Cu x )5 single crystals with x = 0.1−0.6 have been obtained. Their size distribution curves have been plotted, and a correlation between the size of the structure inhomogeneities and the effective width of domain walls has been established.  相似文献   

5.
The preferred adsorption sites and the propensity for a self-organised growth of the molybdenum sulfide cluster Mo6S8 on the Au(111) surface are investigated by density-functional band-structure calculations with pseudopotentials and a plane wave basis set. The quasi-cubic cluster preferentially adsorbs via a face and remains structurally intact. It experiences a strong, mostly non-ionic attraction to the surface at several quasi-isoenergetic adsorption positions. A scan of the potential energy surface exhibits only small barriers between adjacent strong adsorption sites. Hence, the cluster may move in a potential well with degenerate local energy minima at room temperature. The analysis of the electronic structure reveals a negligible electron transfer and S-Au hybridised states, which indicate that the cluster-surface interaction is dominated by S-Au bonds, with minor contributions from the Mo atom in the surface vicinity. All results indicate that Mo6S8 clusters on the Au(111) surface can undergo a template-mediated self-assembly to an ordered inorganic monolayer, which is still redox active and may be employed as surface-active agent in the integration of noble metal and ionic or biological components within nano-devices. Therefore, a classical potential model was developed on the basis of the DFT data, which allows to study larger cluster assemblies on the Au(111).  相似文献   

6.
The mechanism of the CH4 decomposition on the nickel (111) surface is investigatedby first principles calculations. The activation energy of each reaction is calculatedusing nudged elastic band method. The activation energy of hydrogen dissociation from aCH2 fragment isfound much lower than the one of a CH3 fragment. This result is consistent with the fact,observed in our previous molecular dynamics (MD) simulations, that the CH3 fragment is dissociated into aCH fragment and two hydrogen atoms spontaneously. The effects of finite temperatureat 1500 K on the decomposition reaction of a CH4 molecule and its fragments are also investigated usingconstraint MD method. While the temperature effects are barely visible inCH4 andCH2 dissociationprocesses, they reduce the activation free energy of hydrogen dissociation fromCH3 and CHfragments largely.  相似文献   

7.
The existence of one-dimensional (1D) electronic states in Cu/Cu(111) chains assembled by atomic manipulation is revealed by low-temperature scanning tunneling spectroscopy and density functional theory (DFT) calculations. Our experimental analysis of the chain-localized electron dynamics shows that the dispersion is fully described within a 1D tight-binding approach. DFT calculations confirm the confinement of unoccupied states to the chain in the relevant energy range, along with a significant extension of these states into the vacuum region.  相似文献   

8.
The structures, binding energies, and electronic properties of Cn and NaCn (n=2–12) clusters have been systematically investigated using density functional theory (DFT). A number of previously undiscovered isomers of NaCn clusters are reported, including fan-like, linear and three-dimensional structures. Moreover, NaCn clusters with even n are found to be more stable than those with odd n, in contrast with the case of Cn clusters.  相似文献   

9.
The formation of Co atomic chains on a Cu(775) surface is investigated by the kinetic Monte Carlo method. It is found that the length of Co atomic chains formed as a result of self-organization during epitaxial growth is a random quantity and its mean value depends on the parameters of the experiment. The existence of two structural phases in atomic chains is detected using the density functional theory. In the first phase, the separations between an atom and its two nearest neighbors in a chain are 0.230 and 0.280 nm. In the second phase, an atomic chain has identical atomic spacings of 0.255 nm. It is shown that the temperature of the structural phase transition depends on the length of the atomic chain.  相似文献   

10.
Magnetite polycrystalline films are grown by variously oxidizing a Fe film on the Si(111) surface covered by a thin (1.5 nm) SiO2 layer. It is found that defects in the SiO2 layer influence silicidation under heating of the Fe film. The high-temperature oxidation of the Fe film results in the formation of both Fe3O4 and iron monosilicide. However, the high-temperature deposition of Fe in an oxygen atmosphere leads to the growth of a compositionally uniform Fe3O4 film on the SiO2 surface. It is found that such a synthesis method causes [311] texture to arise in the magnetite film, with the texture axis normal to the surface. The influence of the synthesis method on the magnetic properties of grown Fe3O4 films is studied. A high coercive force of Fe3O3 films grown by Fe film oxidation is related to their specific morphology and compositional nonuniformity.  相似文献   

11.
The results of scanning tunneling microscopy (STM) investigation of controllable growth of C60 adsorption on a Bi(0001)/Si(111) surface are reported. With the use of UHV STM, it has been shown that the most favorable sites for the initial stage of C60 adsorption are the double steps and domain boundaries. At ∼1 monolayer C60 coverage, the modulation pattern caused by the epitaxial relation between C60 and Bi unit cells has been observed. An increase in the C60 coverage up to several monolayers results in the formation of a highly crystalline molecular film. The text was submitted by the authors in English.  相似文献   

12.
We investigated the electronic structure of epitaxially grown silver films on Cu(111) with and without adsorption of cesium by means of scanning tunneling spectroscopy and two-photon photoemission. This system has been chosen as a model system to engineer and measure the dynamics of charge-transfer processes between an adsorbate and a heterogeneous substrate. Special emphasis has been laid on the investigation of the energy shift of the Shockley-type surface state and an excited cesium resonance as a function of Ag film thickness. For the cesium resonance we observe an increase in line width with increasing layer thickness. PACS 68.37.Ef; 68.43.-h; 68.55.Jk; 73.20.-r  相似文献   

13.
The energies of magnetic interactions between Co adatoms at the vicinal Cu(111) surface are calculated in the framework of the density functional theory using the Korringa-Kohn-Rostoker type Green’s functions. It is demonstrated that the interactions between Co adatoms appreciably depend on the distance from a surface step. Our calculations show that the magnitude of the repulsive barrier related to the surface step is larger for Co adatoms located at the upper surface terrace than for those located at the lower surface terrace.  相似文献   

14.
15.
The desorption of NO from a well-characterized, epitaxially grown semiconducting C60 surface is reported. Two different channels are identified in the laser desorption. Both channels yield a comparably high desorption cross section of σ1=7.0×10-17 cm2 and σ2=5.5×10-17 cm2 for the first and second channel, respectively. The laser desorbed NO molecules are detected with rovibrational state selectivity by (1+1) REMPI in the -bands. In the first channel the desorbing molecules are highly excited with an average kinetic energy of 〈Ekin〉=174 meV. The rotational population distribution can be fitted by a rotational temperature of Trot=800 K. A rotational–translational coupling is observed, with velocities ranging from 1000 m/s for low to 1300 m/s for high rotational states. The vibrationally excited population is estimated to be less than 1% of the ground state. The second channel yields less excited molecules and an almost Boltzmann distributed rotational population with a temperature of Trot=280 K. The apparent velocity distribution derived from the pump-probe delay yields molecules much too slow to be explained by even a thermal desorption. This desorption is probably caused by a long-lived electronic excitation in the substrate for which a lifetime of τ≈160 μs is estimated. PACS 42.62.Fi; 34.50.Dy; 68.49.Df; 68.43.Tj; 79.20.La  相似文献   

16.
It is shown, that the well-known d-electron Tamm surface-state emission observed in photoelectron spectra from Cu(111) at the point in the surface Brillouin zone, is indeed due to such a surface state and not a bulk band transition as recently suggested L. Wallden, Solid State Commun. 59, 205 (1986). A similar surface state on Ag(111) is reported.  相似文献   

17.
18.
The morphology and atomic structure of C60 fullerene films on the Bi(0001)/Si(111)?7 × 7 surface with different coverages have been studied by scanning tunneling microscopy and spectroscopy and low-energy electron microscopy in high vacuum. It is shown that the most favorable sites for nucleation of C60 islands are double steps and domain boundaries on the surface of epitaxial Bi film.  相似文献   

19.
Electronic properties of Gd@C82 metallofullerene peapods, (Gd@C82)n@SWNTs, were investigated by electron energy-loss spectroscopy (EELS), scanning tunneling microscopy and spectroscopy (STM/STS), and field-effect transistor (FET) transport measurements. The results indicate that the electronic structure of Gd@C82 metallofullerene peapods is completely different from that of intact single-walled nanotubes (SWNTs). For example, Gd@C82-peapod-FETs show ambipolar behavior which is not observed in the empty SWNT-FETs under our experimental conditions. Furthermore, in semiconducting nanotubes the band gap can be varied from ∼0.5 to ∼0.1 eV using inserted Gd@C82 endohedral metallofullerenes with a spatial periodicity of 1.1 to 8.0 nm, depending on the density of the fullerenes. The present findings suggest that metallofullerene peapods may point the way toward novel electronic devices. Received: 6 September 2002 / Accepted: 25 October 2002 / Published online: 10 March 2003 RID="*" ID="*"Corresponding author. Fax: +81-52/789-1169, E-mail: noris@cc.nagoya-u.ac.jp  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号