首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This is an epidemiological SIRV model based study that is designed to analyze the impact of vaccination in containing infection spread, in a 4-tiered population compartment comprised of susceptible, infected, recovered and vaccinated agents. While many models assume a lifelong protection through vaccination, we focus on the impact of waning immunization due to conversion of vaccinated and recovered agents back to susceptible ones. Two asymptotic states exist, the “disease-free equilibrium” and the “endemic equilibrium” and we express the transitions between these states as function of the vaccination and conversion rates and using the basic reproduction number. We find that the vaccination of newborns and adults have different consequences on controlling an epidemic. Also, a decaying disease protection within the recovered sub-population is not sufficient to trigger an epidemic at the linear level. We perform simulations for a parameter set mimicking a disease with waning immunization like pertussis. For a diffusively coupled population, a transition to the endemic state can proceed via the propagation of a traveling infection wave, described successfully within a Fisher-Kolmogorov framework.  相似文献   

2.
The study of the impact of human activity patterns on network dynamics has attracted a lot of attention in recent years. However, individuals’ knowledge of their own physical states has rarely been incorporated into modeling processes. In real life, for certain infectious processes, infected agents may not have any visible or physical signs and symptoms; therefore, they may believe that they are uninfected even when they have been infected asymptomatically. This infection awareness factor is covered neither in the classical epidemic models such as SIS nor in network propagation studies. In this article, we propose a novel infectious process model that differentiates between the infection awareness states and the physical states of individuals and extend the SIS model to deal with both asymptomatic infection characteristics and human activity patterns. With regards to the latter, we focus particularly on individuals’ testing action, which is to determine whether an individual is infected by an epidemic. The simulation results show that less effort is required in controlling the disease when the transmission probability is either very small or large enough and that Poisson activity patterns are more effective than heavy-tailed patterns in controlling and eliminating asymptomatic infectious diseases due to the long-tail characteristic.  相似文献   

3.
Links in a realistic network may have different functions, which makes the network virtually a combination of some small-size functional subnetworks. Here, by a model of coupled phase oscillators, we investigate how such functional subnetworks are evolved and developed according to the network structure and dynamics. In particular, we study the case of evolutionary clustered networks in which the function type of each link (attractive or repulsive coupling) is adaptively updated according to the local network dynamics. It is found that during the process of system evolution, the network is gradually stabilized into a particular form in which the attractive (repulsive) subnetwork consists only of the intralinks (interlinks). Based on the observed properties of subnetwork evolution, we also propose a new algorithm for network partition which, compared with the conventional algorithms, is distinguished by its convenient operation and fast computing speed.  相似文献   

4.
We introduce a continuum model of neural tissue that includes the effects of spike frequency adaptation (SFA). The basic model is an integral equation for synaptic activity that depends upon nonlocal network connectivity, synaptic response, and the firing rate of a single neuron. We consider a phenomenological model of SFA via a simple state-dependent threshold firing rate function. As without SFA, Mexican-hat connectivity allows for the existence of spatially localized states (bumps). Importantly recent Evans function techniques are used to show that bumps may destabilize leading to the emergence of breathers and traveling waves. Moreover, a similar analysis for traveling pulses leads to the conditions necessary to observe a stable traveling breather. Simulations confirm our theoretical predictions and illustrate the rich behavior of this model.  相似文献   

5.
In this paper, we propose an improved walk model for simulating the train movement on railway network. In the proposed method, walkers represent trains. The improved walk model is a kind of the network-based simulation analysis model. Using some management rules for walker movement, walker can dynamically determine its departure and arrival times at stations. In order to test the proposed method, we simulate the train movement on a part of railway network. The numerical simulation and analytical results demonstrate that the improved model is an effective tool for simulating the train movement on railway network. Moreover, it can well capture the characteristic behaviors of train scheduling in railway traffic.  相似文献   

6.
Yu H  Wang J  Liu C  Deng B  Wei X 《Chaos (Woodbury, N.Y.)》2011,21(4):043101
In this paper, we investigate the effect of a high-frequency driving on the dynamical response of excitable neuronal systems to a subthreshold low-frequency signal by numerical simulation. We demonstrate the occurrence of vibrational resonance in spatially extended neuronal networks. Different network topologies from single small-world networks to modular networks of small-world subnetworks are considered. It is shown that an optimal amplitude of high-frequency driving enhances the response of neuron populations to a low-frequency signal. This effect of vibrational resonance of neuronal systems depends extensively on the network structure and parameters, such as the coupling strength between neurons, network size, and rewiring probability of single small-world networks, as well as the number of links between different subnetworks and the number of subnetworks in the modular networks. All these parameters play a key role in determining the ability of the network to enhance the outreach of the localized subthreshold low-frequency signal. Considering that two-frequency signals are ubiquity in brain dynamics, we expect the presented results could have important implications for the weak signal detection and information propagation across neuronal systems.  相似文献   

7.
Network theory provides various tools for investigating the structural or functional topology of many complex systems found in nature, technology and society. Nevertheless, it has recently been realised that a considerable number of systems of interest should be treated, more appropriately, as interacting networks or networks of networks. Here we introduce a novel graph-theoretical framework for studying the interaction structure between subnetworks embedded within a complex network of networks. This framework allows us to quantify the structural role of single vertices or whole subnetworks with respect to the interaction of a pair of subnetworks on local, mesoscopic and global topological scales. Climate networks have recently been shown to be a powerful tool for the analysis of climatological data. Applying the general framework for studying interacting networks, we introduce coupled climate subnetworks to represent and investigate the topology of statistical relationships between the fields of distinct climatological variables. Using coupled climate subnetworks to investigate the terrestrial atmosphere’s three-dimensional geopotential height field uncovers known as well as interesting novel features of the atmosphere’s vertical stratification and general circulation. Specifically, the new measure “cross-betweenness” identifies regions which are particularly important for mediating vertical wind field interactions. The promising results obtained by following the coupled climate subnetwork approach present a first step towards an improved understanding of the Earth system and its complex interacting components from a network perspective.  相似文献   

8.
《Physica A》2005,356(1):100-106
Clusters of infected individuals are defined on data from health laboratories, but this quantity has not been defined and characterized by epidemy models on statistical physics. For a system of mobile agents we simulate a model of infection without immunization and show that all the moments of the cluster size distribution at the critical rate of infection are characterized by only one exponent, which is the same exponent that determines the behavior of the total number of infected agents. No giant cluster survives independent of the magnitude of the rate of infection.  相似文献   

9.
在二部无标度网上的两性疾病传播   总被引:2,自引:0,他引:2       下载免费PDF全文
利用易感-感染-易感(SIS)传播模型研究人类性接触网上的病毒传播.当仅仅考虑异性性接触时,该网络是一个二部的无标度网.对这个网络上的SIS传播模型,通过率方程的方法分析了男性感染率和女性感染率与传染阈值之间的关系,发现女性感染者与男性感染者之比由网络的拓扑和男女感染率之比所确定.这一结果表明性接触网的拓扑对性传染病传播的重要性.最后给出了支持理论结果的数值模拟. 关键词: 性传染病 两性性接触网 无标度网络 二部图  相似文献   

10.
It is an important issue to identify important influencing factors in railway accident analysis. In this paper, employing the good measure of dependence for two-variable relationships, the maximal information coefficient (MIC), which can capture a wide range of associations, a complex network model for railway accident analysis is designed in which nodes denote factors of railway accidents and edges are generated between two factors of which MIC values are larger than or equal to the dependent criterion. The variety of network structure is studied. As the increasing of the dependent criterion, the network becomes to an approximate scale-free network. Moreover, employing the proposed network, important influencing factors are identified. And we find that the annual track density-gross tonnage factor is an important factor which is a cut vertex when the dependent criterion is equal to 0.3. From the network, it is found that the railway development is unbalanced for different states which is consistent with the fact.  相似文献   

11.
Considering the spread of an epidemic among a population of mobile agents that can get infected and maintain the infection for a period, we investigate the variation in the homogeneity of the distribution of the epidemic with the remaining time of infection τ, the velocity modulus of the agent v, and the infection rate α. We find that the distribution of the infected cluster size is always exponential. By analyzing the variation of the characteristic infected cluster size coefficient, we show that the inhomogeneity of epidemic distribution increases with an increase in τ for very low v, while it decreases with an increase in τ for moderate v. The epidemic distribution also tends to a homogeneous state as both v and α increase.  相似文献   

12.
Yu H  Wang J  Liu C  Deng B  Wei X 《Chaos (Woodbury, N.Y.)》2011,21(4):047502
We study the phenomenon of stochastic resonance on a modular neuronal network consisting of several small-world subnetworks with a subthreshold periodic pacemaker. Numerical results show that the correlation between the pacemaker frequency and the dynamical response of the network is resonantly dependent on the intensity of additive spatiotemporal noise. This effect of pacemaker-driven stochastic resonance of the system depends extensively on the local and the global network structure, such as the intra- and inter-coupling strengths, rewiring probability of individual small-world subnetwork, the number of links between different subnetworks, and the number of subnetworks. All these parameters play a key role in determining the ability of the network to enhance the noise-induced outreach of the localized subthreshold pacemaker, and only they bounded to a rather sharp interval of values warrant the emergence of the pronounced stochastic resonance phenomenon. Considering the rather important role of pacemakers in real-life, the presented results could have important implications for many biological processes that rely on an effective pacemaker for their proper functioning.  相似文献   

13.
In this paper, the transitions of burst synchronization are explored in a neuronal network consisting of subnetworks. The studied network is composed of electrically coupled bursting Hindmarsh-Rose neurons. Numerical results show that two types of burst synchronization transitions can be induced not only by the variations of intra- and intercoupling strengths but also by changing the probability of random links between different subnetworks and the number of subnetworks. Furthermore, we find that the underlying mechanisms for these two bursting synchronization transitions are different: one is due to the change of spike numbers per burst, while the other is caused by the change of the bursting type. Considering that changes in the coupling strengths and neuronal connections are closely interlaced with brain plasticity, the presented results could have important implications for the role of the brain plasticity in some functional behavior that are associated with synchronization.  相似文献   

14.
Our aim here is to address the problem of decomposing a whole network into a minimal number of ego–centered subnetworks. For this purpose, the network egos are picked out as the members of a minimum dominating set of the network. However, to find such an efficient dominating ego–centered construction, we need to be able to detect all the minimum dominating sets and to compare all the corresponding dominating ego–centered decompositions of the network. To find all the minimum dominating sets of the network, we are developing a computational heuristic, which is based on the partition of the set of nodes of a graph into three subsets, the always dominant vertices, the possible dominant vertices and the never dominant vertices, when the domination number of the network is known. To compare the ensuing dominating ego–centered decompositions of the network, we are introducing a number of structural measures that count the number of nodes and links inside and across the ego–centered subnetworks. Furthermore, we are applying the techniques of graph domination and ego–centered decomposition for six empirical social networks.  相似文献   

15.
We abstract bus transport networks (BTNs) to complex networks using the Space P approach. First, we select three actual BTNs in three major cities in China, namely, Beijing, Shanghai and Hangzhou. Using the SIS model, we simulate and study the epidemic spreading in the three BTNs. We obtain the density of infected vertices varying with time and the stationary density of infected vertices varying with infection rate. Second, we simulate and study the epidemic spreading in a recently introduced BTN evolution model, the network properties of which correspond well with those of actual BTNs. Third, we use mean-field theory to analyze the epidemic dynamics behavior of the BTN evolution model and obtain the theoretical epidemic threshold of this model. The theoretical value agrees well with the simulation results. Based on the work in this paper, we provide the following possible forecasts for epidemic dynamics in actual BTNs. An actual BTN should have a finite positive epidemic threshold. If the effective infection rate is above this threshold, the epidemic spread in the network and the density of infected vertices finally stabilizes in a balanced state. Below this threshold, the number of infected vertices decays exponentially fast and the epidemic cannot spread on a large scale.  相似文献   

16.
We consider the simplest network of coupled non-identical phase oscillators capable of displaying a "chimera" state (namely, two subnetworks with strong coupling within the subnetworks and weaker coupling between them) and systematically investigate the effects of gradually removing connections within the network, in a random but systematically specified way. We average over ensembles of networks with the same random connectivity but different intrinsic oscillator frequencies and derive ordinary differential equations (ODEs), whose fixed points describe a typical chimera state in a representative network of phase oscillators. Following these fixed points as parameters are varied we find that chimera states are quite sensitive to such random removals of connections, and that oscillations of chimera states can be either created or suppressed in apparent bifurcation points, depending on exactly how the connections are gradually removed.  相似文献   

17.
徐园芬 《物理学报》2013,62(10):100202-100202
利用动力系统方法研究一维Tonks-Girardeau原子气区域中Gross-Pitaevskii (GP)方程简化模型的一些精确行波解以及这些精确行波解的动力学行为, 研究系统的参数对行波解的动力学行为的影响. 在不同的参数条件下, 获得了一维Tonks-Girardeau原子气区域中GP方程简化模型的六个行波解的精确参数表达式. 关键词: 动力系统方法 孤立波解 周期波解 扭波解  相似文献   

18.
Jian-Feng Zheng  Zi-You Gao 《Physica A》2008,387(24):6177-6182
In this paper, we propose a simple weighted network model that generalizes the complex network model evolution with traffic flow previously presented to investigate the relationship between traffic flow and network structure. In the model, the nodes in the network are represented by the traffic flow states, the links in the network are represented by the transform of the traffic flow states, and the traffic flow transported when performing the transform of the traffic flow states is considered as the weight of the link. Several topological features of this generalized weighted model, such as the degree distribution and strength distribution, have been numerically studied. A scaling behavior between the strength and degree sklogk is obtained. By introducing some constraints to the generalized weighted model, we study its subnetworks and find that the scaling behavior between the strength and degree is conserved, though the topology properties are quite sensitive to the constraints.  相似文献   

19.
We present a four-velocity kinetic model of van der Waals fluids. Although, from the physical point of view this model is very simple, mathematically it is quite complicated. Due to this complexity we performed various simplifications, which are also presented. We look for traveling wave solutions for these simplified versions. A discussion of the types of the states of rest is presented. We pay some attention to the monotonicity of the density component of the traveling wave. Finally, we compare the model's kinetic and hydrodynamic shock wave structures. The new feature is that kinetic effects alone are unable to kill the artificial phenomenon of impending shock splitting.  相似文献   

20.
Using the minority game as a model for competition dynamics, we investigate the effects of interagent communications across a network on the global evolution of the game. Agent communication across this network leads to the formation of an influence network, which is dynamically coupled to the evolution of the game, and it is responsible for the information flow driving the agents' actions. We show that the influence network spontaneously develops hubs with a broad distribution of in-degrees, defining a scale-free robust leadership structure. Furthermore, in realistic parameter ranges, facilitated by information exchange on the network, agents can generate a high degree of cooperation making the collective almost maximally efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号