首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Holonomic quantum computation is a quantum computation strategy that promises some built-in noise-resilience features. Here, we propose a scheme for nonadiabatic holonomic quantum computation with nitrogen-vacancy center electron spins, which are characterized by fast quantum gates and long qubit coherence times. By varying the detuning, amplitudes, and phase difference of lasers applied to a nitrogen-vacancy center, one can directly realize an arbitrary single-qubit holonomic gate on the spin. Meanwhile, with the help of cavity-assisted interactions, a nontrivial two-qubit holonomic quantum gate can also be induced. The distinct merit of this scheme is that all the quantum gates are obtained via an all-optical geometric manipulation of the solid-state spins. Therefore, our scheme opens the possibility for robust quantum computation using solid-state spins in an all-optical way.  相似文献   

2.
人工智能的快速发展需要人工智能专用硬件的快速发展,受人脑存算一体、并行处理启发而构建的包含突触与神经元的神经形态计算架构,可以有效地降低人工智能中计算工作的能耗.记忆元件在神经形态计算的硬件实现中展现出巨大的应用价值;相比传统器件,用忆阻器构建突触、神经元能极大地降低计算能耗,然而在基于忆阻器构建的神经网络中,更新、读...  相似文献   

3.
正Because of quantum superposition,quantum computation can solve many problems,such as factoring large integers[1]and searching unsorted databases[2,3],much faster than classical computation.To realize practical quantum computation and then gain the desired advantages,a universal set of quantum gates with sufficiently high fidelities are needed.However,various inevitable errors reduce the gate fidelities and finally collapse the computation results,which makes the realizations of quantum computation very challenging.To relax  相似文献   

4.
The Modulation Transfer Function (MTF) is a measure of an optical system’s ability to transfer contrast from the specimen to the image plane at a specific resolution. It can be computed either numerically by geometrical optics or measured experimentally by imaging a knife edge or a bar-target pattern of varying spatial frequency. Previously, MTF accuracy was generally affected by the size of the mesh on the image plane. This paper presents a new MTF computation method based on the irradiance model, without counting the number of rays hitting each grid. To verify the method, the MTF in the sagittal and meridional directions of an axis-symmetrical optical system is computed by both the ray-counting and the proposed methods. It is found that the grid size meshed on the image plane significantly affects the MTF of the ray-counting method, sometimes with significantly negative results. The proposed irradiance method is immune to issues of grid size. The CPU computation time for the two methods is approximately the same.  相似文献   

5.
A feasible scheme for constructing quantum logic gates is proposed on the basis of quantum switches in cavity QED. It is shown that the light field which is fed into the cavity due to the passage of an atom in a certain state can be used to manipulate the conditioned quantum logical gate. In our scheme, the quantum information is encoded in the states of Rydberg atoms and the cavity mode is not used as logical qubits or as a communicating “bus”; thus, the effect of atomic spontaneous emission can be neglected and the strict requirements for the cavity can be relaxed.  相似文献   

6.
《Physica A》2006,362(2):305-313
Based on quantum computation, a novel quantum block cryptographic algorithm that can be used to encrypt classical messages is proposed. The security of this algorithm is analyzed from several aspects. It is shown that the quantum block cryptographic algorithm, in which the key can be reused after undergoing a check procedure, can prevent quantum attack strategy as well as classical attack strategy. The problem of key management is discussed and the circuits for encryption and decryption are suggested.  相似文献   

7.
Magic-angle spinning (MAS) solid state nuclear magnetic resonance (NMR) spectroscopy is shown to be a promising technique for implementing quantum computing. The theory underlying the principles of quantum computing with nuclear spin systems undergoing MAS is formulated in the framework of formalized quantum Floquet theory. The procedures for realizing state labeling, state transformation and coherence selection in Floquet space are given. It suggests that by this method, the largest number of qubits can easily surpass that achievable with other techniques. Unlike other modalities proposed for quantum computing, this method enables one to adjust the dimension of the working state space, meaning the number of qubits can be readily varied. The universality of quantum computing in Floquet space with solid state NMR is discussed and a demonstrative experimental implementation of Grover's search is given. Received 19 April 2001  相似文献   

8.
9.
《中国物理 B》2021,30(6):60312-060312
Measurement-based quantum computation with continuous variables, which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state, provides a feasible way to implement quantum computation. Quantum error correction is an essential procedure to protect quantum information in quantum computation and quantum communication. In this review, we briefly introduce the progress of measurement-based quantum computation and quantum error correction with continuous variables based on Gaussian cluster states. We also discuss the challenges in the fault-tolerant measurement-based quantum computation with continuous variables.  相似文献   

10.
射线模型是声场计算时常用的模型之一,为了使射线模型Bellhop实现对声场的快速计算,该文基于Bellhop传播模型的C++版本BellhopC开发了并行化射线模型BellhopMP。在并行的处理过程中,结合高斯射线理论,利用多线程技术,建立稳定可靠的并行模型,实现快速声场预报。文章通过仿真实验验证了该模型计算声场的准确性,并通过典型海洋波导下的声传播问题对其并行计算性能进行了测试。结果表明使用BellhopMP能够大幅度提高计算速度,有效解决深海远程等长时间声场计算问题,并且串行所需的计算时间越长,并行效率越高。  相似文献   

11.
许鹏  何晓东  刘敏  王谨  詹明生 《物理学报》2019,68(3):30305-030305
相互作用可控、相干时间较长的中性单原子体系具备在1 mm2的面积上提供成千上万个量子比特的规模化集成的优势,是进行量子模拟、实现量子计算的有力候选者.近几年中性单原子体系在实验上取得了快速的发展,完成了包括50个单原子的确定性装载、二维和三维阵列中单个原子的寻址和操控、量子比特相干时间的延长、基于里德伯态的两比特量子门的实现和原子态的高效读出等,这些工作极大地推动了该体系在量子模拟和量子计算方面的应用.本文综述了该体系在量子计算方面的研究进展,并介绍了我们在其中所做的两个贡献:一是实现了"魔幻强度光阱",克服了光阱中原子退相干的首要因素,将原子相干时间提高了百倍,使得相干时间与比特操作时间的比值高达105;二是利用异核原子共振频率的差异建立了低串扰的异核单原子体系,并利用里德伯阻塞效应首次实现了异核两原子的量子受控非门和量子纠缠,将量子计算的实验研究拓展至异核领域.最后,分析了中性单原子体系在量子模拟和量子计算方面进一步发展面临的挑战与瓶颈.  相似文献   

12.
Integrated photonic devices are expected to play a promising role in the field of quantum information science. In this paper we propose two schemes for generating polarization-mode entangled photon pairs based on titanium-indiffused waveguide on periodically polled lithium niobate by using simultaneous quasi-phase-matching of Type-I and higher order Type-0 spontaneous parametric down conversion processes in one of them and Type-II in another. The photon pairs are emitted at the wavelength of 812 nm suitable for quantum computation applications within a bandwidth of 14 and 0.2 nm, and the generation rate of the degenerate sources is 44,360 and 91 pairs/(s GHz mW) respectively, in a 1-cm long waveguide. These degenerate sources can provide maximally entangled photon pairs as the Tangle of the sources is as high as 0.9999 and 1, accordingly.  相似文献   

13.
Jianqi Zhang  Huan Xu 《Pramana》2009,72(3):547-554
A new scheme of binary half adder and full adder is proposed. It realizes a kind of all-optical computation which is based on the polarization coding technique and the nonlinear total reflectional optical switches.   相似文献   

14.
王学文  罗月娥  张丽杰  许新建 《中国物理 B》2017,26(10):108902-108902
A class of models for activity-driven networks is proposed in which nodes vary in two states: active and inactive.Only active nodes can receive links from others which represent instantaneous dynamical interactions. The evolution of the network couples the addition of new nodes and state transitions of old ones. The active group changes with activated nodes entering and deactivated ones leaving. A general differential equation framework is developed to study the degree distribution of nodes of integrated networks where four different schemes are formulated.  相似文献   

15.
Quantum circuit model has been widely explored for various quantum applications such as Shors algorithm and Grovers searching algorithm. Most of previous algorithms are based on the qubit systems. Herein a proposal for a universal circuit is given based on the qudit system, which is larger and can store more information. In order to prove its universality for quantum applications, an explicit set of one-qudit and two-qudit gates is provided for the universal qudit computation. The one-qudit gates are general rotation for each two-dimensional subspace while the two-qudit gates are their controlled extensions. In comparison to previous quantum qudit logical gates, each primitive qudit gate is only dependent on two free parameters and may be easily implemented. In experimental implementation, multilevel ions with the linear ion trap model are used to build the qudit systems and use the coupling of neighbored levels for qudit gates. The controlled qudit gates may be realized with the interactions of internal and external coordinates of the ion.  相似文献   

16.
游建强 《物理》2010,39(12):810-815
超导量子器件能够展现宏观量子相干性.基于超导量子器件的量子计算是量子信息领域中的一个重要研究方向,同时,超导量子器件物理特性的研究也是目前凝聚态物理和量子光学领域的交叉前沿课题.文章简述了近年来在超导量子计算方面的一些重要结果和进展,并讨论了其研究现状和发展趋势.  相似文献   

17.
For a 3-manifold with triangulated boundary, the Turaev-Viro topological invariant can be interpreted as a quantum error-correcting code. The code has local stabilizers, identified by Levin and Wen, on a qudit lattice. Kitaev’s toric code arises as a special case. The toric code corresponds to an abelian anyon model, and therefore requires out-of-code operations to obtain universal quantum computation. In contrast, for many categories, such as the Fibonacci category, the Turaev-Viro code realizes a non-abelian anyon model. A universal set of fault-tolerant operations can be implemented by deforming the code with local gates, in order to implement anyon braiding. We identify the anyons in the code space, and present schemes for initialization, computation and measurement. This provides a family of constructions for fault-tolerant quantum computation that are closely related to topological quantum computation, but for which the fault tolerance is implemented in software rather than coming from a physical medium.  相似文献   

18.
Most quantum computer realizations require the ability to apply local fields and tune the couplings between qubits, in order to realize single bit and two bit gates which are necessary for universal quantum computation. We present a scheme to remove the necessity of switching the couplings between qubits for two bit gates, which are more costly in many cases. Our strategy is to compute with encoded qubits in and out of carefully designed interaction free subspaces analogous to decoherence free subspaces. We give two examples to show how universal quantum computation is realized in our scheme with local manipulations to physical qubits only, for both diagonal and off diagonal interactions.  相似文献   

19.
We show how it is possible to realize quantum computations on a system in which most of the parameters are practically unknown. We illustrate our results with a novel implementation of a quantum computer by means of bosonic atoms in an optical lattice. In particular, we show how a universal set of gates can be carried out even if the number of atoms per site is uncertain.  相似文献   

20.
By exploiting the polarization multistability of polaritons, we show that polarized signals can be conducted in the plane of a semiconductor microcavity along controlled channels or "neurons." Furthermore, because of the interaction of polaritons with opposite spins it is possible to realize binary logic gates operating on the polarization degree of freedom. Multiple gates can be integrated together to form an optical circuit contained in a single semiconductor microcavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号