首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Measurements of the magnetic susceptibility, magnetization, specific heat and electrical resistivity on a new Kondo lattice compound CeCu1.54Si1.46 have revealed an antiferromagnetic phase transition at 6.9 K. The analysis of the specific heat demonstrates that this compound is a moderately heavy electron system with strong spin fluctuations. Based on the resistivity result, we maintain that the coherence between Kondo states at Ce sites is hindered by the disorder in the Cu and Si sublattice in this non-stoichiometric compound.  相似文献   

2.
The magnetization, the electrical resistivity, the specific heat, the thermal conductivity, and the thermal diffusion of a polycrystalline Heusler alloy Ni45.37Mn40.91In13.72 sample are studied. Anomalies, which are related to the coexistence of martensite and austenite phases and the change in their ratio induced by a magnetic field and temperature, are revealed and interpreted. The behavior of the properties of the alloy near Curie temperature TC also demonstrates signs of a structural transition, which suggests that the detected transition is a first-order magnetostructural phase transition. The nontrivial behavior of specific heat detected near the martensite transformation temperatures is partly related to a change in the electron density of states near the Fermi level. The peculiar peak of phonon thermal conductivity near the martensitic transformation is interpreted as a consequence of the appearance of additional soft phonon modes, which contribute to the specific heat and the thermal conductivity.  相似文献   

3.
The main properties and the type of the field-tuned quantum critical point in the heavy-fermion metal CeCoIn5 that arise upon application of magnetic fields B are considered within a scenario based on fermion condensation quantum phase transition. We analyze the behavior of the effective mass, resistivity, specific heat, charge, and heat transport as functions of applied magnetic fields B and show that, in the Landau Fermi liquid regime, these quantities demonstrate critical behavior, which is scaled by the critical behavior of the effective mass. We show that, in the high-field non-Fermi liquid regime, the effective mass exhibits very specific behavior, M*~ T? 2/3, and the resistivity demonstrates T2/3 dependence. Finally, at elevated temperatures, it changes to M*~T?1/2, while the resistivity becomes linear in T. In zero magnetic field, the effective mass is controlled by temperature T and the resistivity is also linear in T. The obtained results are in good agreement with recent experimental facts.  相似文献   

4.
Magnetic properties, electrical resistivity, specific heat and magnetic excitations have been investigated in Heusler phases CeInAg2–xCux. The hybridization continuously increases from CeInAg2 (antiferromagnetic Kondo lattice) to CeInCu2 (heavy fermion compound). The specific heat coefficient for this last compound is found to reach 1.2 J/mole. K2 at 1.4 K, the Kondo temperature is 6 K and the Wilson ratio is close to 2.  相似文献   

5.
Measurements of magnetic and transport properties were performed on needle-shaped single crystals of Ce12Fe57.5As41 and La12Fe57.5As41. The availability of a complete set of data enabled a side-by-side comparison between these two rare earth compounds. Both compounds exhibited multiple magnetic orders within 2–300 K and metamagnetic transitions at various fields. Ferromagnetic transitions with Curie temperatures of 100 and 125 K were found for Ce12Fe57.5As41 and La12Fe57.5As41, respectively, followed by antiferromagnetic type spin reorientations near Curie temperatures. The magnetic properties underwent complex evolution in the magnetic field for both compounds. An antiferromagnetic phase transition at about 60 K and 0.2 T was observed merely for Ce12Fe57.5As41. The field-induced magnetic phase transition occurred from antiferromagnetic to ferromagnetic structure. A strong magnetocrystalline anisotropy was evident from magnetization measurements of Ce12Fe57.5As41. A temperature-field phase diagram was present for these two rare earth systems. In addition, a logarithmic temperature dependence of electrical resistivity was observed in the two compounds within a large temperature range of 150–300 K, which is rarely found in 3D-based compounds. It may be related to Kondo scattering described by independent localized Fe 3d moments interacting with conduction electrons.  相似文献   

6.
The tetragonal compound UNi2Si2 exhibits in zero magnetic field three different antiferromagnetic phases belowT N =124 K. They are formed by ferromagnetic basal planes, which are antiferromagnetically coupled along thec-axis with the propagation vectorq=(0, 0, q z ). Two additional order-order magnetic phase transitions are observed below T N , namely atT 1=108 K and T 2=40 K in zero magnetic field. All three phases exhibit strong uniaxial anisotropy confining the U moments to a direction parallel to the c-axis. UNi2Si2 single crystals were studied in detail by measuring bulk thermodynamic properties, such as thermal expansion, resistivity, susceptibility, and specific heat. A microscopic study using neutron diffraction was performed in magnetic fields up to 14.5 T parallel to the c-axis, and a complex magnetic phase diagram has been determined. Here, we present the analysis of specific-heat data measured in magnetic fields up to 14 T compared with the results of the neutron-diffraction study and with other thermodynamic properties of UNi2Si2.  相似文献   

7.
The temperature dependence of the electrical resistivity, thermopower, specific heat, susceptibility and magnetization of CeCuAl3 are presented. CeCuAl3 behaves as a Kondo lattice system with antiferromagnetic ground state properties (T N 2.8 K). The valency of Ce in this tetragonal compound is close to 3 and the overall crystal field splitting found from our results is about 150 K. The Kondo temperatureT K in the crystal field ground state, estimated from the magnetic susceptibility and the specific heat, is of the order of 8 K.  相似文献   

8.
We report transport, magnetic and thermodynamic properties of the skutterudite compound LaFe4Sb12. The basic features are a large magnetic susceptibility χ(T), and large electronic coefficient γ of the heat capacity. In particular, a T1.35, T1.7, and T-2/3 temperature dependence of the magnetic susceptibility χ(T), resistivity ρ(T), and Grüneisen parameter Γ(T), respectively, is found at low temperature. An overall understanding of these physical properties is achieved, assuming that LaFe4Sb12 is a non-Fermi liquid system close to a ferromagnetic quantum critical point, with a spin fluctuation temperature Tsf=50±15 K.  相似文献   

9.
《Physics letters. A》1986,117(3):145-149
Measurements of magnetic susceptibility, electrical resistivity and specific heat on CePt2Si2 and LaPt2Si2 compounds are reported. Several anomalous properties are observed in CePt2Si2, characteristic of Kondo lattice and Fermi liquid systems with indication of coherence effects below 2 K.  相似文献   

10.
The behavior of the specific heat near the quantum critical point x ∼ 0.3 in the Tm1 − x Yb x B12 system has been studied. Detailed measurements have been performed on high-quality single-crystalline Tm0.74Yb0.26B12 samples within a wide temperature range of 1.9–300 K in a magnetic field up to 9 T. The temperature dependence of the magnetic contribution to the specific heat has a logarithmic divergence of the form C/T ∼ lnT at T < 4 K, which can be attributed to the quantum critical behavior regime suppressed by the external magnetic field. The Schottky anomaly of the magnetic contribution to the specific heat in Tm0.74Yb0.26B12 has been analyzed.  相似文献   

11.
We present the results of measurements of low-temperature heat capacity, as well as electrical and magnetic properties of Heusler alloys Fe2VAl and Fe2CrAl prepared in different ways using various heat treatment regimes. The density of states at the Fermi level is estimated. A contribution of ferromagnetic clusters in the low-temperature heat capacity of the Fe2VAl alloy is detected. The change in the number and volume of clusters as a result of annealing of an alloy affects the behavior of their low-temperature heat capacity, resistivity, and magnetic properties.  相似文献   

12.
稀磁合金的杂质互作用效应   总被引:6,自引:0,他引:6       下载免费PDF全文
本文用格林函数方法讨论Tk(Kondo温度)时杂质互作用对Kondo效应的影响。对s-d互作用哈密顿量作自洽场近似时,同时计入导致Kondo效应和产生杂质互作用的切断项,求得了杂质系统的Kondo温度和低温电阻。结果表明:在稀磁合金中,杂质间的互作用效应使Kondo温度下降,并且使T《Tk时的电阻率温度变化曲线由(1-AT2)型变为(1+BT2)型(A,B>0),从而可能在Tk温区产生电阻极大。 关键词:  相似文献   

13.
Binary icosahedral and crystalline phases of the Zr70Pd30 alloy were obtained in crystallization from the amorphous state during heat treatment. The specific heat and electrical resistivity of the icosahedral, amorphous, and crystalline phases were measured and compared. An increase in the electronic density of states on the Fermi surface, lattice softening, and an increase in the electron-phonon coupling constant were observed to occur with decreasing structural order. Despite the high valence electron density in the icosahedral phase, where the electronic densities of states are twice those in the crystal, the electrical resistivity of the icosahedral phase is ~50 times as high. Superconductivity was observed for the first time in the icosahedral phase of a binary system of transition metal atoms, Zr70Pd30.  相似文献   

14.
The electrical resistivity of the Kondo system (La, Ce)B6 has been measured in longitudinal and transversal magnetic fields up to 6 Tesla in the temperature range 0.04–20K. Corresponding to the strong increase of the resistivity with decreasing temperature the alloys show a very large negative magnetoresistivity with a Kondo temperatureT K =1.05K and a Kondo magnetic fieldB K =1.1 Tesla. The observed anisotropy of the resistivity due to the magnetic field direction cannot be explained well by existing theories.  相似文献   

15.
We have synthesized single crystals of CeZnAl3, which is a new member of family of Ce-based intermetallics CeTX3 (T=transition metal, X=Si, Ge, Al), crystallizing in the non-centrosymmetric tetragonal BaNiSn3-type structure. Magnetization, specific heat and resistivity measurements all show that CeZnAl3 orders magnetically below around 4.4 K. Furthermore, magnetization measurements exhibit a hysteresis loop at low temperatures and fields, indicating the presence of a ferromagnetic component in the magnetic state. This points to a different nature of the magnetism in CeZnAl3 compared to the other isostructural CeTAl3 compounds. Resistivity measurements under pressures up to 1.8 GPa show a moderate suppression of the ordering temperature with pressure, suggesting that measurements to higher pressures are required to look for quantum critical behavior.  相似文献   

16.
Electrical resistivity and magnetoresistance of CeB6 single crystal have been measured in the temperature range from 1.3 to 300 K under the magnetic field up to 85 kOe. Three characteristic phases are distinguished consistently with other measurements. The Kondo like behaviour in the resistivity observed in the high temperature phase is fitted by the conventional form for the dilute Kondo state with the Kondo temperature TK = 5 ~ 10K and the unitarity limit resistivity ?u? 110 μΩ cm/Ce-atom. The negative magnetoresistance in the middle phase is stronger with increasing magnetic field and with decreasing temperature suggesting rapid destruction of the Kondo state. The magnetoresistance in the low temperature phase exhibits some anomalies suggesting sub-phases corresponding to several kinds of spin ordering.  相似文献   

17.
The magnetic susceptibility and specific heat of single crystals of the Ba2Fe2GeO7 barium ferrigermanate are investigated. It is revealed that the temperature dependence of the magnetic susceptibility exhibits a kink at a temperature T = 8.5 K. The number of nonequivalent positions of Fe3+ ions and their occupancies are determined using Mössbauer spectroscopy. It is shown that the Fe3+ ions located in tetrahedral positions T2 are ordered incompletely, which is inconsistent with the results obtained previously. An assumption is made regarding the possible ground magnetic state of the Ba2Fe2GeO7 compound.  相似文献   

18.
19.
The low-temperature minimum of the La0.85Ag0.15MnO3 resistivity has been investigated. The analysis of the experimental data shows that this minimum of resistivity in zero magnetic field and the large magnetoresistive effect, which increases with a decrease in temperature, can be explained within the model of spin-polarized tunneling of carriers through grain boundaries.  相似文献   

20.
We observe and explain a universal scaling rhochi = const for the electrical resistivity rho with the inverse magnetic susceptibility chi(-1) for the Kondo insulator CeRhSb(1-x)Snx. In the regime where the Kondo gap disappears (x > 0.12), the system forms a non-Fermi liquid (NFL), which transforms into a Fermi liquid at higher temperature. The NFL behavior is associated with the presence of a novel quantum critical point (QCP) at the Kondo insulator-correlated metal boundary. The divergent behavior of the resistivity, the susceptibility, and the specific heat has been observed when approaching the QCP from the metallic side and is interpreted as due to the competition between the Kondo and the intersite magnetic correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号