首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Xylan backbones in native plant cell walls are extensively acety-lated. Previously, no direct investigations as to their role in cellulolytic enzyme resistance have been done, though indirect results point to their importance. An in vitro deesterification of aspen wood and wheat straw has been completed using hydroxylamine solutions. Yields of 90% acetyl ester removal for both materials have been accomplished, with little disruption of other fractions (i.e., lignin). Apparently, as the xylan becomes increasingly deacetylated, it becomes 5–7 times more digestible. This renders the cellulose fraction more accessible, and 2–3 times more digestible. This effect levels off near an acetyl removal of 75%, where other resistances become limiting.  相似文献   

2.
3.
In recent years, Mitogen-Activated Protein Kinase (MAPK) pathways have emerged as major regulators of cellular physiology. In the fungal pathogen Candida albicans, three different MAPK pathways have been characterized in the last years. The HOG pathway is mainly a stress response pathway that is activated in response to osmotic and oxidative stress and also participates regulating other pathways. The SVG pathway (or mediated by the Cek1 MAPK) is involved in cell wall formation under vegetative and filamentous growth, while the Mkc1-mediated pathway is involved in cell wall integrity. Oxidative stress is one of the types of stress that every fungal cell has to face during colonization of the host, where the cell encounters both hypoxia niches (i.e. gut) and high concentrations of reactive oxygen species (upon challenge with immune cells). Two pathways have been shown to be activated in response to oxidative stress: the HOG pathway and the MKC1-mediated pathway while the third, the Cek1 pathway is deactivated. The timing, kinetics, stimuli and functional responses generated upon oxidative stress differ among them; however, they have essential functional consequences that severely influence pathogenesis. MAPK pathways are, therefore, valuable targets to be explored in antifungal research.  相似文献   

4.
A factorial composite design has been employed for a rapid exploration of the effect of some parameters on the stability of spiked methylmercury iodide solutions. The analysis has been performed by capillary gas chromatography with electron-capture detection. The results obtained by the factorial and the univariate methods are in a good agreement. Although, the factorial design does not allow a discrimination of the significance among the same kind of factors, it greatly reduces the number of experiments when the different variables are investigated.  相似文献   

5.
A factorial composite design has been employed for a rapid exploration of the effect of some parameters on the stability of spiked methylmercury iodide solutions. The analysis has been performed by capillary gas chromatography with electron-capture detection. The results obtained by the factorial and the univariate methods are in a good agreement. Although, the factorial design does not allow a discrimination of the significance among the same kind of factors, it greatly reduces the number of experiments when the different variables are investigated.  相似文献   

6.
Chitin synthase is responsible for the biosynthesis of chitin, an essential component of the fungal cell wall. There is a long-standing question as to whether "processive" transferases such as chitin synthase operate in the same manner as non-processive transferases. The question arises from analysis of the polysaccharide structure--in chitin, for instance, each sugar residue is rotated approximately 180 degrees relative to the preceding sugar in the chain. This requires that the enzyme account for the alternating "up/down" configuration during biosynthesis. An enzyme with a single active site, analogous to the non-processive transferases--would have to accommodate a distorted glycosidic linkage at every other synthetic step. An alternative proposal is that the enzyme might assemble the disaccharide donor, addressing the "up/down" conformational problem prior to polymer synthesis. We present compelling evidence that this latter hypothesis is incorrect.  相似文献   

7.
A stainless steel cell with an in-cell solid-phase microextraction (SPME) sampling device is proposed to investigate the permeation of dichloromethane, 1,2-dichloroethane, and benzene through a high-density polyethylene (HDPE) membrane. The advantage of using SPME as a direct sampling device in the collection chamber is that it is a simple and sensitive means to monitor the concentrations of organic compounds in the collection medium for a closed-loop test system. Compared with the permeation results for an ASTM F739 cell, the standardized breakthrough times were shorter and the permeability coefficients were greater using the alternative cell. Although the optimum SPME sampling parameters should be obtained in advance, the in-cell SPME method can be an appropriate approach to determine the resistance of polymeric membranes to permeation by organic solvents.  相似文献   

8.
Cellulose - The structural arrangement of the polymers in the cell wall of wood has still not been fully established. This relates specifically to the role of the two hemicelluloses, glucomannan...  相似文献   

9.
本文利用近十几年内发展起来的Pitzer方程表达配合平衡中各个电解质的活度系数,假设支持电解质的离子强度可近似地代表平衡体系的离子强度,并把Pitzer方程中的因子exp(-aμ~1/2)展成级数,忽略高次项,从而使Pitzer参数B,B'皆与离子强度无关,得到的式中K~μ和K~0分别为配合物在一定离子强度u下的逐级稳定常数和逐级热力学稳定常数,Δz^2为配合反应中产物和反应物的电荷平方差A~1,A~2为经验参数,根据方程式(1),利用曲线回归技术可以得logK0,为了校正本公式推演过程中的两点假设,式(1)右边加三次项,得到三次曲线方程式;考虑到计算和外推方便,舍去式(1)右边二次项,得到线性方程式,用本文三种方法处理了前人的实验数据,与传统的方法相比,本文所提供的三种方法都可得到满意的结果。  相似文献   

10.
The St. Michael Archangel’s Church in Szalowa, Poland, was selected for closer investigation with respect to the indoor/outdoor air exchange and its influence on the air quality and work arts preservation. Chemical composition, size and abundance of particulate matter and concentration of gases NO2, SO2, O3 inside and outside the church were determined. To study seasonal variation of the weather condition (temperature, inversion level, wind direction) and the influence of seasonal sources of the air pollution (like heating of the nearby houses), samples were collected in winter and summer time. It was stated that suspended particulate matter inside the wooden church has in general an outdoor source. Several groups of particles were distinguished such as the organic ones, soil dust, nitrates and sulphates. In case of organic and soil dust particles, the concentration inside was higher than outside. From the results, in comparison to literature data, one can conclude that accumulation of particulate suspended matter in the church is more intense than in other types of buildings. Gaseous pollutants were detected but their concentration was negligible.  相似文献   

11.
The filamentous fungi Trichoderma reesei and Penicillium funiculosum produce highly effective enzyme mixtures that degrade the cellulose and hemicellulose components of plant cell walls. Many fungal species produce a glycoside hydrolase family 7 (Cel7A) cellobiohydrolase, a class of enzymes that catalytically process from the reducing end of cellulose. A direct amino acid comparison of these two enzymes shows that they not only have high amino acid homology, but also contain analogous N-linked glycosylation sites on the catalytic domain. We have previously shown (Jeoh et al. in Biotechnol Biofuels, 1:10, 2008) that expression of T. reesei cellobiohydrolase I in a commonly used industrial expression host, Aspergillus niger var. awamori, results in an increase in the amount of N-linked glycosylation of the enzyme, which negatively affects crystalline cellulose degradation activity as well as thermal stability. This complementary study examines the significance of individual N-linked glycans on the surface of the catalytic domain of Cel7A cellobiohydrolases from T. reesei and P. funiculosum by genetically adding or removing N-linked glycosylation motifs using site directed mutagenesis. Modified enzymes, expressed in A. niger var. awamori, were tested for activity and thermal stability. It was concluded that N-linked glycans in peptide loops that form part of the active site tunnel have the greatest impact on both thermal stability and enzymatic activity on crystalline cellulose for both the T. reesei and P. funiculosum Cel7A enzymes. Specifically, for the Cel7A T. reesei enzyme expressed in A. niger var. awamori, removal of the N384 glycosylation site yields a mutant with 70% greater activity after 120 h compared to the heterologously expressed wild type T. reesei enzyme. In addition, similar activity improvements were found to be associated with the addition of a new glycosylation motif at N194 in P. funiculosum. This mutant also exhibits 70% greater activity after 120 h compared to the wild type P. funiculosum enzyme expressed in A. niger var. awamori. Overall, this study demonstrates that “tuning” enzyme glycosylation for expression from heterologous expression hosts is essential for generating engineered enzymes with optimal stability and activity.  相似文献   

12.
13.
Cotton fiber maturity is a major yield component and an important fiber quality trait that is directly linked to the quantity of cellulose deposited during the secondary cell wall (SCW) biogenesis. Cotton fiber development consists of five major overlapping stages: differentiation, initiation, polar elongation, secondary cell wall development, and maturation. The transition period between 16 and 21 dpa (days post anthesis) is regarded to represent a major developmental stage between the primary cell wall and the SCW. Fourier Transform Infrared spectroscopy was used to investigate the structural changes that occur during the different developmental stages. The IR spectra of fibers harvested at different stages of development (10, 14, 17, 18, 19, 20, 21, 24, 27, 30, 36, 46, and 56 dpa) show the presence of vibrations located at 1,733 cm−1 (C=O stretching originating from esters or amides) and 1,534 cm−1 (NH2 deformation corresponding to proteins or amino acids). The results converge towards the conclusion that the transition phase between the primary cell wall and the secondary cell wall occurs between 17 and 18 dpa in fibers from TX19 cultivar, while this transition occurs between 21 and 24 dpa in fibers from TX55 cultivar.  相似文献   

14.
With the development of antibiotic-resistant bacterial strains, infectious diseases have become again a life-threatening problem. One of the reasons for this dilemma is the limited number and breadth of current therapeutic targets for which several resistance strategies have evolved over time. To expand the number of addressable enzyme targets and to understand their function, activity, and regulation, we utilized a chemical proteomic strategy, called activity-based protein profiling (ABPP) pioneered by Cravatt, for the identification of beta-lactam-binding enzymes under in vivo conditions. In this two-tiered strategy, we first prepared a selection of conventional antibiotics for labeling diverse penicillin binding proteins (PBPs) and second introduced a new synthetic generation of beta-lactam probes, which labeled and inhibited a selection of additional PBP unrelated bacterial targets. Among these, the virulence-associated enzyme ClpP and a resistance-associated beta-lactamase were labeled and inhibited by selected probes, indicating that the specificity of beta-lactams can be adjusted to versatile enzyme families with important cellular functions.  相似文献   

15.
The recent rise of vancomycin-resistant enterococci (VRE) and vancomycin-resistant Staphylococcus aureus (VRSA) has given new impetus to the study of the binding between glycopeptide antibiotics and bacterial cell wall termini. Here, we report on an extensive first principles investigation of the binding of vancomycin, avoparcin, teicoplanin, and ristocetin aglycons with dipetides, Ac-d-Ala-X, where X = d-Lac and d-Ser (characteristic of VREs) and X = d-Ala, Gly (characteristic of non-VREs), and a model "methylated d-Ala" CH(2)CH(CH(3))COO(-), in liquid as well as gas phase. The gas-phase ordering of the binding, from strongest to weakest, is Gly, d-Ala, d-Ser, CH(2)CH(CH(3))COO(-), and d-Lac. Calculations show that the order of the Gly and d-Ala binding is reversed in solution. The results are in good agreement with recent experimental findings.  相似文献   

16.
Previous studies in Aspergillus fumigatus (Mouyna I., Fontaine T., Vai M., Monod M., Fonzi W. A., Diaquin M., Popolo L., Hartland R. P., Latgé J.-P, J. Biol. Chem. 2000, 275, 14882-14889) have shown that a glucanosyltransferase playing an important role in fungal cell wall biosynthesis is glycosylphosphatidylinositol (GPI) anchored to the membrane. To identify other GPI-anchored proteins putatively involved in cell wall biogenesis, a proteomic analysis has been undertaken in A. fumigatus and the protein data were matched with the yeast genomic data. GPI-anchored proteins of A. fumigatus were released from membrane preparation by an endogenous GPI-phospholipase C, purified by liquid chromatography and separated by two-dimensional electrophoresis. They were characterized by their peptide mass fingerprint through matrix-assisted laser desorption/ionization-time of flight-(MALDI-TOF)-mass spectrometry and by internal amino acid sequencing. Nine GPI-anchored proteins were identified in A. fumigatus. Five of them were homologs of putatively GPI-anchored yeast proteins (Csa1p, Crh1p, Crh2p, Ecm33p, Gas1p) of unknown function but shown by gene disruption analysis to play a role in cell wall morphogenesis. In addition, a comparative study performed with chitin synthase and glucanosyl transferase mutants of A. fumigatus showed that a modification of the growth phenotype seen in these mutants was associated to an alteration of the pattern of GPI-anchored proteins. These results suggest that GPI-anchored proteins identified in this study are involved in A. fumigatus cell wall organization.  相似文献   

17.
The influence of eight different ionic liquid (IL) solvents on the stability of the lipase Candida antarctica lipase B (CAL-B) is investigated with molecular dynamics (MD) simulations. Considered ILs contain cations that are based either on imidazolium or guanidinium as well as nitrate, tetrafluoroborate or hexafluorophosphate anions. Partial unfolding of CAL-B is observed during high-temperature MD simulations and related changes of CAL-B regarding its radius of gyration, surface area, secondary structure, amount of solvent close to the backbone and interaction strength with the ILs are evaluated. CAL-B stability is influenced primarily by anions in the order NO(3)(-)? BF(4)(-) < PF(6)(-) of increasing stability, which agrees with experiments. Cations influence protein stability less than anions but still substantially. Long decyl side chains, polar methoxy groups and guanidinium-based cations destabilize CAL-B more than short methyl groups, other non-polar groups and imidazolium-based cations, respectively. Two distinct causes for CAL-B destabilization are identified: a destabilization of the protein surface is facilitated mostly by strong Coulomb interactions of CAL-B with anions that exhibit a localized charge and strong polarization as well as with polar cation groups. Surface instability is characterized by an unraveling of α-helices and an increase of surface area, radius of gyration and protein-IL total interaction strength of CAL-B, all of which describe a destabilization of the folded protein state. On the other hand, a destabilization of the protein core is facilitated when direct core-IL interactions are feasible. This is the case when long alkyl chains are involved or when particularly hydrophobic ILs induce major conformational changes that enable ILs direct access to the protein core. This core instability is characterized by a disintegration of β-sheets, diffusion of ions into CAL-B and increasing protein-IL van der Waals interactions. This process describes a stabilization of the unfolded protein state. Both of these processes reduce the folding free energy and thus destabilize CAL-B. The results of this work clarify the impact of ions on CAL-B stabilization. An extrapolation of the observed trends enables proposing novel ILs in which protein stability could be enhanced further.  相似文献   

18.
The ammonium sulfate-precipitated fraction from mycelia and culture-filtrates and the crude, cell-free culture filtrates from the growth medium of the fungiChrysosporium palmorum, Eurotium rubrum, Micromucor isabellina, andPythium aphanidermatum when aseptically added to cell suspensions ofCantharanthus roseus caused a rapid and dramatic increase in indole alkaloid biosynthesis. Up to 400 μg/L ajmalicine and 600 μg/L catharanthine were detected in C.roseus cell suspension grown in the presence of theM. isabellina fungal culture filtrate for 3 d. Untreated cells produced only trace levels of ajmalicine and catharanthine per liter of cell suspension after 15 d of culture.  相似文献   

19.
A convenient chemical synthesis of the hexasaccharide repeating unit of the cell wall lipopolysaccharide of Azospirillum irakense KBC1 has been successfully achieved. A stereo- and regioselective [4 + 2] block glycosylation strategy has been used to obtain the target hexasaccharide as its octyl glycoside. All synthetic intermediates have been prepared in high yields from commercially available reducing sugars following a series of protection–deprotection reactions. An oxidation–reduction methodology has been applied to convert β-d-glucosidic unit to a β-d-mannosidic moiety.  相似文献   

20.
A new method is presented for determining the mass of products resulting from metastable decay in a reflectron time-of-flight mass-spectrometer. The validity of the calculation was confirmed through comparison to experimental values obtained while studying a water cluster and a methanol cluster system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号