首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The isotypic title compounds Ba4Pr7[Si12N23O][BN3], Ba4Nd7[Si12N23O][BN3], and Ba4Sm7[Si12N23O][BN3] were prepared by reaction of Pr, Nd, or Sm, with barium, BaCO3, Si(NH)2, and poly(boron amide imide) in nitrogen atmosphere in tungsten crucibles using a radiofrequency furnace at temperatures up to 1650 C. They were obtained as main products (approximately 70%) embedded in a very hard glass matrix in the form of intense dark green (Pr), orange-brown (Sm), or dark red (Nd) large single crystals, respectively. The stoichiometric composition of Ba4Sm7[Si12N23O][BN3] was verified by a quantitative elemental analysis. According to the single-crystal X-ray structure determinations (Ba4Ln7[Si12N23][BN3], Z= , P6 with Ln = Pr: a = 1225.7(1), c = 544.83(9) pm, R1 = 0.013, wR2 = 0.030; Ln = Nd: a = 1222.6(1), c = 544.6(1) pm, R1 = 0.017, wR2 = .039; Ln = Sm: a = 1215.97(5), c = 542.80(5) pm, R1 = 0.047, wR2 = 0.099) all three compounds are built up by a framework structure [Si12N23O]23- of corner-sharing SiX4 tetrahedrons (X = O, N). The oxygen atoms are randomly distributed over the X positions. The trigonal-planar orthonitridoborate ions [BN3]6- and also the Ln(3)3+ are situated in hexagonal cages of the framework (bond lengths Si-(N/O) 169-179 pm for Ln=Pr). The remaining Ba2+ and Ln3- ions are positioned in channels of the large-pored network. The trigonal-planar [BN3]6- ions have a B-N distance of 147.1(6) pm (for Ln = Pr). Temperature-dependent susceptibility measurements for Ba4Nd7[Si12N23O][BN3] revealed Curie-Weiss behavior above 60 K with an experimental magnetic moment of muexp = 3.36(5) microB/Nd. The deviation from Curie-Weiss behavior below 60 K may be attributed to crystal field splitting of the J = 9/2 ground state of the Nd3+ ions. No magnetic ordering is evident down to 4.2 K.  相似文献   

2.
The alkali dicyanamides M[N(CN)2] (M=K, Rb) were synthesized through ion exchange, and the corresponding tricyanomelaminates M3[C6N9] were obtained by heating the respective dicyanamides. The thermal behavior of the dicyanamides and their reaction to form the tricyanomelaminates were investigated by temperature-dependent X-ray powder diffractometry and thermoanalytical measurements. Potassium dicyanamide K[N(CN)2] was found to undergo four phase transitions: At 136 degrees C the low-temperature modification alpha-K[N(CN)2] transforms to beta-K[N(CN)2], and at 187degrees C the latter transforms to the high-temperature modification gamma-K[N(CN)2], which melts at 232 degrees C. Above 310 degrees C the dicyanamide ions [N(CN)2]- trimerize and the resulting tricyanomelaminate K3[C6N9] solidifies. Two modifications of rubidium dicyanamide have been identified: Even at -25 degrees C, the a form slowly transforms to beta-Rb[N(CN)2] within weeks. Rb[N(CN)2] has a melting point of 190 degrees C. Above 260 degrees C the dicyanamide ions [N(CN)2]- of the rubidium salt trimerize in the melt and the tricyanomelaminate Rb3[C6N9] solidifies. The crystal structures of all phases were determined by powder diffraction methods and were refined by the Rietveld method. alpha-K[N(CN)2] (Pbcm, a = 836.52(1), b = 46.90(1), c =7 21.27(1) pm, Z = 4), gamma-K[N(CN)2] (Pnma, a = 855.40(3), b = 387.80(1), 1252.73(4) pm, Z = 4), and Rb[N(CN)2] (C2/c, a = 1381.56(2), b = 1000.02(1), c = 1443.28(2) pm, 116.8963(6) degrees, Z = 16) represent new structure types. The crystal structure of beta-K[N(CN)2] (P2(1/n), a = -726.92(1), b 1596.34(2), c = 387.037(5) pm, 111.8782(6) degrees, Z = 4) is similar but not isotypic to the structure of alpha Na[N(CN)2]. alpha-Rb[N(CN)2] (Pbcm, a = 856.09(1), b = 661.711(7), c = 765.067(9) pm, Z = 4) is isotypic with alpha-K[N(CN)2]. The alkali dicyanamides contain the bent planar anion [N(CN)2]- of approximate symmetry C2, (average bond lengths: C-N(bridge) 133, C-N(term) 113 pm; average angles N-C-N 170 degrees, C-N-C 120 degrees). K3[C6N9] (P2(1/c), a = 373.82(1), b = 1192.48(5), c = 2500.4(1) pm, beta = 101.406(3) degrees, Z = 4) and Rb,[C6N9] (P2(1/c), a = 389.93(2), b = 1226.06(6), c = 2547.5(1) pm, 98.741(5) degrees, Z=4) are isotypic and they contain the planar cyclic anion [C6N9]3-. Although structurally related, Na3[C6N9] is not isotypic with the tricyanomelaminates M3[C6N9] (M = K, Rb).  相似文献   

3.
Ba[CoN]: A Low-Valency Nitridocobaltate with Angled Chains [CoN2/22?] Ba[CoN] is prepared by reaction of barium and cobalt (molar ratio Ba : Co = 1 : 2.5) in tantalum crucibles at 870°C with flowing nitrogen (1 atm) within a period of 96 h. After cooling down to room temperature (24°C/h) black single crystals of the ternary phase with a platy habit are obtained (orthorhombic, Pnma; a = 959.9(2) pm, b = 2 351.0(3) pm, c = 547.6(2) pm; Z = 20). The crystal structure of Ba[CoN] contains angled (planar) chains [CoN2/22?] which run along the [010]-direction (N? Co? N[°]: 178.5(5), 179.6(6), 180.0; Co? N? Co[°]: 82.9(6), 84.2(5), 177.1(8); Co? N[pm]: 174.6(12), 177.2(12), 181.9(13), 184.3(13), 187.1(12)). Nitrogen is in an octahedral coordination (N Ba4Co2) and is arranged in a distorted cubic close packing. Barium occupies one half of the tetrahedral holes (Ba? N[pm]: 274.8(16) ? 308.2(12)). The cis-positions of the Co-atoms at the nitrogen coordination-octahedra cause short Co? Co contacts within the chains [CoN2/22?]. Through this, Co2-units (Co? Co[pm]: 247.8(4); bridged by nitrogen) and linear Co3-groups (Co? Co [pm]: 245.5(2); Co? Co? Co[°]: 180.0; bridged by nitrogen) alternate along the chains. The crystal structure of Ba[CoN] is closely related to the Ba[NiN] type structure.  相似文献   

4.
Ln6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)(8) (Ln = Nd, Eu, Tb, Dy) compounds are obtained as the final hydrolysis products of lanthanide triiodides in an aqueous solution. Their X-ray crystal structure features a body-centered arrangement of oxygen-centered {Ln6X8}8+ cluster cores: [Nd6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1310.4(3) pm, b = 1502.1(3) pm, c = 1514.9(3) pm, 3384 reflections with I0 > 2sigma(I0), R1 = 0.0340, wR2 = 0.0764, GOF = 1.022, T = 298(2) K], [Eu6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1306.6(2) pm, b = 1498.15(19) pm, c = 1499.41(18) pm, 4262 reflections with I0 > 2sigma(I0), R1 = 0.0540, wR2 = 0.0860, GOF = 0.910, T = 298(2) K], [Tb6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1296.34(5) pm, b = 1486.13(7) pm, c = 1491.88(6) pm, 4182 reflections with I0 > 2sigma(I0), R1 = 0.0395, wR2 = 0.0924, GOF = 1.000, T = 298(2) K], and [Dy6(mu6-O)(mu3-OH)8(H2O)24]I8(H2O)8 [Pearson code oP156, orthorhombic, Pnnm (No. 58), Z = 2, a = 1296.34(5) pm, b = 1486.13(7) pm, c = 1491.88(6) pm, 3329 reflections with I0 > 2sigma(I0), R1 = 0.0389, wR2 = 0.0801, GOF = 0.992, T = 298(2) K.  相似文献   

5.
Ternary Nitridoborates. 2. Synthesis, Crystal Structure, and Vibrational Spectra of New Ternary Compounds with the [N–B–N]3– Anion The isotypic compounds LiM4[BN2]3 (M = Ca, Sr, Ba, Eu) and NaM4[BN2]3 (M = Sr, Ba) are formed as colorless to pale yellow prismatic crystals (black with Eu) by reaction of the binary components Li3N, M3N2, EuN and Na, NaN3, Ba3N2 and BN in sealed niobium ampoules at 1375 and 1275 K, respectively. The linear anions [N–B–N]3– have bond lengths d(B–N) between 132.6 and 136.6 pm. Vibrational frequencies and force constants f(B–N) = 7.25–7.89 Ncm–1 reveal significant drifts related to bond length and effective anionic charge. The cubic crystal structures (Im3m (No. 229), Z = 2; LiM4[BN2]3: a(Ca) = 711.5 pm; a(Sr) = 745.6 pm; a(Eu) = 742.5 pm, a(Ba) = 788.0 pm and NaM4[BN2] 3 : a(Sr) = 756.8 pm; a(Ba) = 791.7 pm)) are stuffed derivatives of the β‐PtHg4 structure type, and the range of existence of this cubic structure is derived from the molar volume and the ionic radii. The cations form a partial structure of centered cubes E1(E2)8 which are condensed to a [E1(E2)8/2] network (E1 = Li, Na; E2 = Ca, Sr, Ba, Eu). The remaining open cubes are filled by the [BN2]3– anions yielding two interpenetrating [E1(BN2)6/2] networks. Periodic Nodal Surfaces (PNS) of Im3m symmetry show the regions of different interactions.  相似文献   

6.
Sandwich-type supramolecular cation structures of (M(+))([12]crown-4)(2) complexes (M(+) = Li(+), Na(+), K(+), and Rb(+)) were introduced as countercations to the [Ni(dmit)(2)](-) anion, which bears an S = (1)/(2) spin, to form novel magnetic crystals (dmit(2-) = 2-thione-1,3-dithiole-4,5-dithiolate). The zigzag arrangement of Li(+)([12]crown-4)(2) cations in Li(+)([12]crown-4)(2)[Ni(dmit)(2)](-) salt induced weak intermolecular interactions of [Ni(dmit)(2)](-) dimers, whose magnetic spins were isolated from each other. The molecular arrangements of cations and anions in M(+)([12]crown-4)(2)[Ni(dmit)(2)](-) salts (M(+) = Na(+), K(+), and Rb(+)) were isostructural to each other. In the case of Na(+)([12]crown-4)(2)[Ni(dmit)(2)](-), the space group C2/m changed to C2/c with a lowering in temperature from 298 to 100 K. This structural change occurred at 222.5 K as a first-order phase transition. The space group C2/m (T = 298 K) in the salt K(+)([12]crown-4)(2)[Ni(dmit)(2)](-) also changed to C2/c (T = 100 K), which transition occurred at 270 K. Crystal structural analyses at 298 and 100 K revealed changes in both supramolecular cation conformation and [Ni(dmit)(2)](-) anion arrangements. The transition from C2/m to C2/c crystals generated a dipole moment in the Na(+)([12]crown-4)(2) and K(+)([12]crown-4)(2) structures, which were reconstructed to cancel the net dipole moment of the C2/c crystals. These cation transformations led to changes in intermolecular interactions between the [Ni(dmit)(2)](-) anions via structural rearrangements. The crystal structure of C2/c was stabilized in Rb(+)([12]crown-4)(2)[Ni(dmit)(2)](-) at 298 K. The [Ni(dmit)(2)](-) configuration in these salts with the C2/c space group was a one-dimensional uniform chain, which showed the temperature-dependent magnetic susceptibility of a one-dimensional linear Heisenberg antiferromagnetic chain.  相似文献   

7.
The crystal structure of Li7[Mn(V)N4] was re-determined. Isolated tetrahedral [Mn(V)N4](7-) ions are arranged with lithium cations to form a superstructure of the CaF2 anti-type (P4bar3n, No. 218, a = 956.0(1) pm, Z = 8). According to measurements of the magnetic susceptibility, the manganese (tetrahedral coordination) is in a d(2) S = 1 state. Thermal treatment of Li7[Mn(V)N4] under argon in the presence of elemental lithium at various temperatures leads to Li24[Mn(III)N3]3N2, Li5[(Li1-xMnx)N]3, and Li2[(Li1-xMn(I)x)N], respectively. Li24[Mn(III)N3]3N2 (P3bar1c, No. 163, a = 582.58(6) pm, c = 1784.1(3) pm, Z = 4/3) crystallizes in a trigonal unit cell, containing slightly, but significantly nonplanar trigonal [MnN3](6-) units with C3v symmetry. Measurements of the magnetic susceptibility reveal a d(4) S = 1 spin-state for the manganese (trigonal coordination). Nonrelativistic spin-polarized DFT calculations with different molecular models lead to the conclusion that restrictions in the Li-N substructure are responsible for the distortion from planarity of the [Mn(III)N3](6-). Li5[(Li1-xMnx)N]3 (x = 0.59(1), P6bar2m, No. 189, a = 635.9(3) pm, c = 381.7(2) pm, Z = 1) is an isotype of Li5[(Li1-xNix)N]3 with manganese in an average oxidation state of about +1.6. The crystal structure is a defect variant of the alpha-Li3N structure type with the transition metal in linear coordination by nitrogen. Li2[(Li1-xMn(I)x)N] (x = 0.67(1), P6/mmm, No. 191, a = 371.25(4) pm, c = 382.12(6) pm, Z = 1) crystallizes in the alpha-Li3N = Li2[LiN] structure with partial substitution of the linearly nitrogen-coordinated Li-species by manganese(I). Measurements of the magnetic susceptibility are consistent with manganese (linear coordination) in a low-spin d(6) S = 1 state.  相似文献   

8.
The first fully structurally characterized ternary europium palladium hydrides (deuterides) are reported. The most Eu rich compound is Eu(2)PdD(4). Its beta-K(2)SO(4) type structure (space group Pnma, a = 749.47(1) pm, b = 543.34(1) pm, c = 947.91(1) pm, Z = 4) contains tetrahedral 18-electron [PdD(4)](4)(-) complex anions and divalent Eu cations. The compound is presumably nonmetallic and shows paramagnetic behavior (mu(eff) = 8.0(2) mu(B)) with ferromagnetic ordering at T(C) = 15.1(4) K. A metallic compound at intermediate Eu content is EuPdD(3). It crystallizes with the cubic perovskite structure (space group Pm3m, a = 380.01(2) pm, Z = 1) in which palladium is octahedrally surrounded by fully occupied deuterium sites. Metallic hydrides at low Eu content form by reversible hydrogen absorption of intermetallic EuPd(2) (Fd3m, a = 775.91(1) pm, Z = 8). Depending on the experimental conditions at least three phases with distinctly different hydrogen contents x exist: EuPd(2)H(x) ( approximately )(0.1) (a = 777.02(2) pm, Z = 8, T = 298 K, p(H(2)) = 590 kPa), EuPd(2)H(x) ( approximately )(1.5) (a = 794.47(5) pm, Z = 8, T = 298 K, p(H(2)) = 590 kPa), and EuPd(2)H(x) ( approximately )(2.1) (a = 802.1(1) pm, Z = 8, T = 350 K, p(H(2)) = 610 kPa). All crystallize with cubic Laves phase derivative structures and have presumably disordered hydrogen distributions.  相似文献   

9.
1 INTRODUCTION The synthesis of new organic-inorganic hybrid compounds is a relatively new research area that has developed rapidly in the last several years[1]. Bische- late ligand[2, 3], such as azobis(2-pyridine), is a novel tetradentate ligand expect…  相似文献   

10.
Synthesis and Molecular Structure of Barium Bis[N,N′-bis(trimethylsilyl)benzamidinate] ° DME ° THF Barium bis[N,N′-bis(trimethylsilyl)benzamidinate] · thf · dme crystallizes in the monoclinic space group P21/n with a = 1 122.0(2), b = 2 190.7(4), c = 1 840.2(3) pm, β = 98.04(1)° and Z = 4 containing a metal center in a distorted monocapped trigonal prismatic surrounding. The barium dibenzamidinate moiety is sent with an angle of 120°, although this leads to different Ba? N distances of 273 and 282 pm originating from the interligand repulsion of the trimethylsilyl groups and the dme substituent. The 1,3-diazaallyl fragment with C? N bond lengths of 132 pm shows a delocalisation of the anionic charge.  相似文献   

11.
We present the synthesis, characterization by DT-TGA and IR, single crystal X-ray nuclear structure at 300 K, nuclear and magnetic structure from neutron powder diffraction on a deuterated sample at 1.4 K, and magnetic properties as a function of temperature and magnetic field of Ni(3)(OH)(2)(SO(4))(2)(H(2)O)(2). The structure is formed of chains, parallel to the c-axis, of edge-sharing Ni(1)O(6) octahedra, connected by the corners of Ni(2)O(6) octahedra to form corrugated sheets along the bc-plane. The sheets are connected to one another by the sulfate groups to form the 3D network. The magnetic properties measured by ac and dc magnetization, isothermal magnetization at 2 K, and heat capacity are characterized by a transition from a paramagnet (C = 3.954 emu K/mol and theta = -31 K) to a canted antiferromagnet at T(N) = 29 K with an estimated canting angle of 0.2-0.3 degrees. Deduced from powder neutron diffraction data, the magnetic structure is modeled by alternate pairs of Ni(1) within a chain having their moments pointing along [010] and [010], respectively. The moments of Ni(2) atoms are oppositely oriented with respect to their adjacent pairs. The resulting structure is that of a compensated arrangement of moments within one layer, comprising one ferromagnetic and three antiferromagnetic superexchange pathways between the nickel atoms.  相似文献   

12.
The rare-earth metal(III) oxide selenides of the formula La4O4Se[Se2], Ce4O4Se[Se2], Pr4O4Se[Se2], Nd4O4Se[Se2], and Sm4O4Se[Se2] were synthesized from a mixture of the elements with selenium dioxide as the oxygen source at 750 degrees C. Single crystal X-ray diffraction was used to determine their crystal structures. The isostructural compounds M4O4Se[Se2] (M=La, Ce, Pr, Nd, Sm) crystallize in the orthorhombic space group Amm2 with cell dimensions a=857.94(7), b=409.44(4), c=1316.49(8) pm for M=La; a=851.37(6), b=404.82(3), c=1296.83(9) pm for M=Ce; a=849.92(6), b=402.78(3), c=1292.57(9) pm for M=Pr; a=845.68(4), b=398.83(2), c=1282.45(7) pm for M=Nd; and a=840.08(5), b=394.04(3), c=1263.83(6) pm for M=Sm (Z=2). In their crystal structures, Se2- anions as well as [Se-Se]2- dumbbells interconnect {[M4O4]4+} infinity 2 layers. These layers are composed of three crystallographically different, distorted [OM4]10+ tetrahedra, which are linked via four common edges. The compounds exhibit strong Raman active modes at around 215 cm(-1), which can be assigned to the Se-Se stretching vibration. Optical band gaps for La4O4Se[Se2], Ce4O4Se[Se2], Pr4O4Se[Se2], Nd4O4Se[Se2], and Sm4O4Se[Se2] were derived from diffuse reflectance spectra. The energy values at which absorption takes place are typical for semiconducting materials. For the compounds M4O4Se[Se2] (M=La, Pr, Nd, Sm) the fundamental band gaps, caused by transitions from the valence band to the conduction band (VB-CB), lie around 1.9 eV, while for M=Ce an absorption edge occurs at around 1.7 eV, which can be assigned to f-d transitions of Ce3+. Magnetic susceptibility measurements of Ce4O4Se[Se2] and Nd4O4Se[Se2] show Curie-Weiss behavior above 150 K with derived experimental magnetic moments of 2.5 micro B/Ce and 3.7 micro B/Nd and Weiss constants of theta p=-64.9 K and theta p=-27.8 K for the cerium and neodymium compounds, respectively. Down to 1.8 K no long-range magnetic ordering could be detected. Thus, the large negative values for theta p indicate the presence of strong magnetic frustration within the compounds, which is due to the geometric arrangement of the magnetic sublattice in form of [OM4]10+ tetrahedra.  相似文献   

13.
Li(3)[ScN(2)] was prepared from Li(3)N with Sc or ScN in a nitrogen atmosphere at 1020 K as a light yellow powder with an optical band gap of about 2.9 eV. The crystal structure was refined based on X-ray and neutron powder diffraction data (Ia$\bar 3$, Z=16, X-ray diffraction: R(profile)=0.078, R(Bragg)=0.070; Neutron diffraction: R(profile)=0.077, R(Bragg)=0.074; Rietfeld: a=1003.940(8) pm, Guinier: a=1004.50(3) pm). Li(3)[ScN(2)] is an isotype of Li(3)[AlN(2)] and Li(3)[GaN(2)] and crystallizes in an ordered superstructure of the Li(2)O structure type, leading to a three-dimensional framework of all-vertex-sharing tetrahedra 3[infinity[ScN[4/2][3-]]. Li is displaced from the center of a tetrahedron of N atoms in the direction of one trigonal face. Li(3)[ScN(2)] decomposes above 1050 K to form ScN and Li(3)N. Calculations of the periodic nodal surface (PNS) and of the electron localization function (ELF) support the picture of a covalent Sc-N network separated from isolated Li cations, whereby scandium d orbitals are involved in the chemical bonding.  相似文献   

14.
Green transparent single crystals of alpha-Ca3[Al2N4] (monoclinic, P2(1)/c, No. 14, a = 957.2(3) pm, b = 580.2(3) pm, c = 956.3(5) pm, beta = 111.62(3) degrees; Z = 4) were obtained from reactions of mixtures of the representative metals with nitrogen above temperatures of 1000 degrees C. beta-Ca3[Al2N4] (monoclinic, C2/c, No. 15, a = 1060.6(2) pm, b = 826.0(2) pm, c = 551.7(1) pm, beta = 92.1(1) degrees; Z = 4) was formed as a byproduct of a reaction of calcium with alumina under nitrogen at T = 930 degrees C in form of colorless crystals. The crystal structures of the two polymorphs contain edge- and corner-sharing AlN4 tetrahedra, leading to different layered anionic partial structures: infinity 2[AlN2/2N2/3)2(AlNN2/2N1/3)6/3(12-)] in the alpha-phase and infinity 2[Al2N2N4/2(6-)] in the beta-polymorph.  相似文献   

15.
Chromium Hexacyano Complexes: The Crystal Structures of the Cyano Elpasolites (NMe4)2ACr(CN)6 (A = K, Cs) and of the Cubic Barium Compound Ba3[Cr(CN)6]2 · 20 H2O The crystal structures of the cyano elpasolites (NMe4)2KCr(CN)6 (a = 1527.3(1), b = 888.1(1), c = 1539.0(1) pm, β = 109.92(1)°; C2/c, Z = 4) and (NMe4)2CsCr(CN)6 (a = 1278.9(1) pm; Fm3m, Z = 4), as well as of the cubic compound Ba3[Cr(CN)6]2 · 20 H2O (a = 1631.0(1) pm; Im3m, Z = 4) were determined by X‐ray methods with single crystals. Reasons for the enlarged distances within the [Cr(CN)6]3–‐octahedron of the K compound (Cr–C: 209.3 pm) compared to the observations within both cubic complexes (206.1 resp. 206.9 pm) are discussed in context with the tolerance factors of cyano elpasolites. As is the case there concerning the cyano bridges Cr–CN–A towards the alkali ions the novel structure type of the barium compound, too, exhibits nearly linear bridging towards Ba. It contributes, however, only four N ligands to the ninefold [BaN4O5] coordination; part of the aqua ligands show disorder (Ba–N: 287.5, Ba–O: 281/293 pm).  相似文献   

16.
The compounds (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y, Tb, Yb, and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), with Ln = La, Sm, Eu, were obtained by reactions of the group 3 metals yttrium and lanthanum as well as the lanthanides europium, samarium, terbium, and ytterbium with 2-(2-pyridyl)-benzimidazole. The reactions were carried out in melts of the amine without any solvent and led to two new groups of homoleptic rare earth pyridylbenzimidazolates. The trivalent rare earth atoms have an eightfold nitrogen coordination of four chelating pyridylbenzimidazolates giving an ionic structure with either pyridylbenzimidazolium or [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)](+) counterions. With Y, Eu, Sm, and Yb, single crystals were obtained whereas the La- and Tb-containing compounds were identified by powder methods. The products were investigated by X-ray single crystal or powder diffraction and MIR and far-IR spectroscopy, and with DTA/TG regarding their thermal behavior. They are another good proof of the value of solid-state reaction methods for the formation of homoleptic pnicogenides of the lanthanides. Despite their difference in the chemical formula, both types (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y (1), Tb (2), Yb (3), and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), Ln = La (4), Sm (5), Eu (6), crystallize isotypic in the tetragonal space group I4(1). Crystal data for (1): T = 170(2) K, a = 1684.9(1) pm, c = 3735.0(3) pm, V = 10603.5(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.053, wR2 = 0.113. Crystal data for (3): T = 170(2) K, a = 1683.03(7) pm, c = 3724.3(2) pm, V = 10549.4(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.047, wR2 = 0.129. Crystal data for (5): T = 103(2) K, a = 1690.1(2) pm, c = 3759.5(4) pm, V = 10739(2) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.050, wR2 = 0.117. Crystal data for (6): T = 170(2) K, a = 1685.89(9) pm, c = 3760.0(3) pm, V = 10686.9(11) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.060, wR2 = 0.144.  相似文献   

17.
Doping of spin-ladder systems by isostructural paramagnetic complexes was attempted. Despite the close isostructural nature of the pure (DT-TTF)2[M(mnt)2] (M = Au, Ni, Pt) end-members, which present a ladder structure, doping of the spin-ladder (DT-TTF)2[Au(mnt)2] with either 5% or 25% [M(mnt)2]- (M = Ni, Pt) generates two (metrically) new phases. Their markedly different crystal structures have been determined using laboratory X-ray powder diffraction data. (DT-TTF)2[Au0.75Ni0.25(mnt)2] consists of a mixed-valence compound (of triclinic symmetry), which was only detected, pure or in a mixture of phases, when [Ni(mnt)2]- was used as a dopant. Differently, the stoichiometric 1:1 [DT-TTF][Au0.75Pt0.25(mnt)2] monoclinic phase was found when [Pt(mnt)2]- (in 5% and 25%) was employed as the doping agent. Remarkably, only in the 5% Pt doping experiment, the major component of the mixture was the ladder structure compound (DT-TTF)2[Au(mnt)2] doped with minor amounts of Pt. This 5% Pt-doped specimen shows an EPR signal (g = 2.0115, DeltaHpp = 114 G at 300 K) wider than the pure compound (DT-TTF)2[Au(mnt)2], denoting exchange between the donor spins and Pt(mnt)2- centers. The electrical transport properties of the 5% Pt-doped composition at high temperatures are comparable to those of (DT-TTF)2[Au(mnt)2] with room-temperature conductivity sigma300K = 13 S/cm and thermopower S300K = 46 microV/K, with a sharp transition at 223 K similar to that previously observed in the Cu analogue at 235 K.  相似文献   

18.
Crystal Structures of [Ph3PMe]Cl·CH2Cl2, [Ph4P]NO3·CH2Cl2, and [Ph4P]2[SiF6]·CH2Cl2 The crystal structures of the title compounds are determined by X‐ray diffraction. In all cases, the included dichloromethane molecules as well as the phosphonium cations are involved to form hydrogen bridges with the anions. [Ph3PMe]Cl·CH2Cl2 ( 1 ): Space group , Z = 2, lattice dimensions at 100 K: a = 890.3(1), b = 988.0(1), c = 1162.5(1) pm, α = 106.57(1)°, β = 91.79(1)°, γ = 92.60(1)°, R1 = 0.0253. [Ph4P]NO3·CH2Cl2 ( 2 ): Space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1057.0(1), b = 1666.0(1), c = 1358.9(1) pm, β = 100.10(1)°, R1 = 0.0359. [Ph4P]2[SiF6]·CH2Cl2 ( 3 ): Space group , Z = 2, lattice dimensions at 193 K: a = 1063.9(1), b = 1233.1(1), c = 1782.5(2) pm, α = 76.88(1)°, β = 83.46(1)°, γ = 72.29(1)°, R1 = 0.0332.  相似文献   

19.
Crystal Structural Studies of the Alkali and Barium Transition Metal Fluorides RbK2Mn2F7, BaNiF4, and a 5 : 3-Phase of the System BaLiF3/NaCoF3 At single crystals of the compounds RbK2Mn2F7, BaNiF4, and of a phase 0.618 BaLiF3/0.382 NaCoF3 the X-ray crystal structures were refined. RbK2Mn2F7 is tetragonal (a = 421.1(1), c = 2188.3(2) pm, I4/mmm, Z = 2) and belongs to the Sr3Ti2O7 type. The average distances are Mn–F: 210.7 pm for the [MnF6] octahedron and A–F: 290.6 resp. 297.1 pm for the [AF9] resp. [AF12] coordination of the mixed alkali positions (A = Rb/3 + 2 K/3). BaNiF4 (a = 413.7(1), b = 1443.1(3), c = 578.1(1) pm, Cmc21, Z = 4) is of the orthorhombic BaZnF4 type; Ni–F: 200.3 pm, Ba–F: 274.3 pm for CN6 and CN9, resp.. The phase of approximate composition 5 : 3, isolated from a 1 : 1 batch BaLiF3/NaCoF3, is cubic (a = 801.8(1) pm, Im3, Z = 8 AMF3) and forms a strongly disordered perovskite super-structure, the features of which are discussed.  相似文献   

20.
1INTRODUCTIONCyclicpolyamineshaveoriginatedagreatdealofinterestowingtotheirbiologicalactivity[1~3]andalotofmetalcomplexeswithmacrocyclicpoly-amineligandssuchastriamine[12]aneN4,tetra-aminecyclen,cyclam,pentaamine[16]aneN5,theirderivativesandsoonhavebeens…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号