首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the relaxation properties of the quantized electromagnetic field in a cavity under repeated interactions with single two-level atoms, so-called one-atom maser. We improve the ergodic results obtained in Bruneau and Pillet (J Stat Phys 134(5–6):1071–1095, 2009) and prove that, whenever the atoms are initially distributed according to the canonical ensemble at temperature $T>0$ , all the invariant states are mixing. Under some non-resonance condition this invariant state is known to be thermal equilibirum at some renormalized temperature $T^*$ and we prove that the mixing is then arbitrarily slow, in other words that there is no lower bound on the relaxation speed.  相似文献   

2.
An experiment to determine the parity of the photon field of one privileged mode in a high-Q resonator is proposed. Even parity indicates that the photon number equals zero, two, four or any other even integer; likewise, odd parity states are mixtures of states with any odd number of photons. The parity measurement can be performed while the resonator is pumped as in standard one-atom maser operation. The time dependence of the parity expectation value is studied theoretically, and we suggest its experimental verification, which would serve as a test of the standard models describing both the relaxation of the cavity field toward thermal equilibrium and the pumping process. The connection between parity expectation values and Wigner's phase space function is recalled; the central value of the Wigner function equals twice the mean parity and it is, therefore, a measurable quantity.  相似文献   

3.
Properties of a laser formed by a high-Q cavity and a single incoherently excited atom are studied on the basis of analytical solutions obtained for the quasi-probability P-function. Expressions for the boundaries separating various operating regimes of a one-atom laser (below threshold, above threshold, and self-quenching) are found. It is shown that lasing without inversion and lasing with the decay rate of the excited state exceeding the pump intensity are possible in the system. The degree of coherence of laser radiation is studied.  相似文献   

4.
The theory of a one-atom maser, when the atoms enter the microresonator being excited to the upper maser level from its ground state by the bichromatic laser field resonant with the two adjacent optically allowed transitions with arbitrary angular momenta, is built. This theory is applied to the investigation of the polarization properties of a one-atom maser, i.e., the dependence of the maser field characteristics on the mutual orientations of the polarization vectors of the maser field mode and of the pump laser field. New experiments are proposed to study such polarization properties, which may be performed within the framework of the experimental setup used by Professor H. Walther and collaborators [1–3].  相似文献   

5.
Observation of quantum collapse and revival in a one-atom maser   总被引:1,自引:0,他引:1  
  相似文献   

6.
The method of periodic trajectories is applied to the analysis of the phase states of a one-atom maser mode, information on which can be obtained from a series of consequent indirect phase-sensitive quantum measurements of atoms leaving the cavity. Such information allows one to study in detail the evolution of a maser mode in a stationary state. The evolution pattern is represented as a random sequence of subensembles in which the mode exists during different time intervals. An approximate stochastic recurrence relation is obtained, which allows us, using the Monte Carlo method, to generate a sequence of relative frequencies of detection of the states of a chosen basis in escaping atoms. Formulas for the phase probability density for subensembles of the mode are derived. These formulas are obtained using as initial data the average relative frequencies measured by an experimenter in a region of a stable trajectory.  相似文献   

7.
The quantum statistical properties of the radiation of a one-atom two-level laser with incoherent pumping are analyzed. Solution of the Liouville equation for the density operator in the basis of Fock states shows that stationary radiation from a single-mode laser with incoherent pumping can be in a squeezed (sub-Poissonian) stationary state if the rate of spontaneous decay is lower than the rate of cavity losses and the pump rate. Inside the cavity the Fano factor reaches F=0.85 (15% squeezing). Multiple squeezing (F=0.19) is possible in the transient lasing regime. Significant squeezing obtains at the cavity output; the spectral Fano factor at zero frequency is 0.36 under optimal conditions. Zh. éksp. Teor. Fiz. 115, 1210–1220 (April 1999)  相似文献   

8.
The interference of two single photons impinging on a beam splitter is measured in a time-resolved manner. Using long photons of different frequencies emitted from an atom-cavity system, a quantum beat with a visibility close to 100% is observed in the correlation between the photodetections at the output ports of the beam splitter. The time dependence of the beat amplitude reflects the coherence properties of the photons. Most remarkably, simultaneous photodetections are never observed, so that a temporal filter allows one to obtain perfect two-photon coalescence even for nonperfect photons.  相似文献   

9.
Zi-Chao Gao 《中国物理 B》2022,31(12):128401-128401
Based on the principle of electron cyclotron maser (ECM), gyrotrons are among the most promising devices to generate powerful coherent terahertz (THz) radiation and play a vital role in numerous advanced THz applications. Unfortunately, THz ECM systems using a conventional high-Q cavity were theoretically and experimentally demonstrated to suffer from strong ohmic losses, and, accordingly, the wave output efficiency was significantly reduced. A scheme to alleviate such a challenging problem is systematically investigated in this paper. The traveling-wave operation concept is employed in a 1-THz third harmonic gyrotron oscillator, which strengthens electron-wave interaction efficiency and reduces the ohmic dissipation, simultaneously. A lossy belt is added in the interaction circuit to stably constitute the traveling-wave interaction, and a down-tapered magnetic field is employed to further amplify the forward-wave (FW) component. The results demonstrate that the proportion of ohmic losses is nearly halved, and output efficiency is nearly doubled, which is promising for further advancement of high-power continuous-wave operation of the ECM-based devices.  相似文献   

10.
In this paper, we investigated numerically an unsteady boundary layer flow of a nanofluid over a stretching sheet in the presence of thermal radiation with variable fluid properties. Using a set of suitable similarity transformations, the governing partial differential equations are reduced into a set of nonlinear ordinary differential equations. System of the nonlinear ordinary differential equations are then solved by the Keller-box method. The physical parameters taken into consideration for the present study are: Prandtl number Pr, Lewis number Le, Brownian motion parameter N b, thermophoresis parameter N t, radiation parameter N r, unsteady parameter M. In addition to these parameters, two more new parameters namely variable thermophoretic diffusion coefficient parameter e and variable Brownian motion diffusion coefficient parameter β have been introduced in the present study. Effects of these parameters on temperature, volume fraction of the nanoparticles, surface heat and mass transfer rates are presented graphically and discussed briefly. To validate our method, we have compared the present results with some previously reported results in the literature. The results are found to be in a very good agreement.  相似文献   

11.
The degenerate two-photon emission process is treated on the basis of quantum theory. Neglecting relaxation mechanisms, solutions in short time approximation are given. Relevant quantities as the mean photon number, second order correlation, field fluctuations and the uncertainty product are analyzed. It is shown, that an initial coherent state does not tend to a two-photon coherent state by two-photon emission as it can be expected from the results given by Yuen.  相似文献   

12.
A bipartite multiphoton entangled state is created through stimulated parametric down-conversion of strong laser pulses in a nonlinear crystal. It is shown how detectors that do not resolve the photon number can be used to analyze such multiphoton states. Entanglement of up to 12 photons is detected using both the positivity of the partially-transposed density matrix and a newly derived criteria. Furthermore, evidence is provided for entanglement of up to 100 photons. The multiparticle quantum state is such that even in the case of an overall photon collection and detection efficiency as low as a few percent, entanglement remains and can be detected.  相似文献   

13.
Single-photon interferometry has been used to simulate quantum computations. Its use has been limited to studying few-bit applications due to rapid growth in physical size with numbers of bits. We propose a hybrid approach that employs n photons, each having L degrees of freedom yielding L(n) basis states. The photons are entangled via a quantum nondemolition measurement. This approach introduces the essential element of quantum computing, that is, entanglement into the interferometry. Using these techniques, we demonstrate a controlled-NOT gate and a Grover's search circuit. These ideas are also applicable to the study of nonlocal correlations in many dimensions.  相似文献   

14.
We present a setup for quantum cryptography based on photon pairs in energy-time Bell states and show its feasibility in a laboratory experiment. Our scheme combines the advantages of using photon pairs instead of faint laser pulses and the possibility to preserve energy-time entanglement over long distances. Moreover, using four-dimensional energy-time states, no fast random change of bases is required in our setup: Nature itself decides whether to measure in the energy or in the time base, thus rendering eavesdropper attacks based on "photon number splitting" less efficient.  相似文献   

15.
We study the statistical properties of thermal radiation in a Kerr nonlinear blackbody in which bare photons with opposite wave vectors and helities are bound into pairs and unpaired photons are transformed into a different kind of quasiparticle, the nonpolariton. This paper investigates the statistical properties of the photon blackbody field by using the second-order correlation function, the phase space distribution function, the photon number distribution and the nonclassical depth. The numerical computation and a discussion of the results are present.  相似文献   

16.
Based on a variant of 2-site Jaynes–Cummings–Hubbard model constructed using superconducting circuits, we propose a method to coherently superpose the localized and delocalized phases of microwave photons, which makes it possible to engineer the collective features of multiple photons in the quantum way using an individual two-level system. Our proposed architecture is also a promising candidate for implementing distributed quantum computation since it is capable of coupling remote qubits in separate resonators in a controllable way.  相似文献   

17.
We predict the transverse momentum (p(T)) dependence of elliptic flow of thermal photons for Au + Au collisions at the BNL Relativistic Heavy Ion Collider. We model the system hydrodynamically, with a thermalized quark-gluon plasma at early times followed by hadronization and decoupling. Photons are emitted throughout the expansion history. Contrary to hadron elliptic flow, which increases monotonically with p(T), the elliptic flow nu2(p(T)) of thermal photons is predicted to first rise and then fall again. Photon elliptic flow at high p(T) reflects the quark momentum anisotropy at early times when it is small, while at low p(T) it mirrors the large pion momentum anisotropy during the late hadronic emission stage. An interesting structure is predicted at intermediate p(T) approximately 0.4 GeV/c, where photon elliptic flow reflects the momenta and the (compared to pions) reduced nu2 of heavy vector mesons in the late hadronic phase.  相似文献   

18.
We demonstrate quantum interference between indistinguishable photons emitted by two nitrogen-vacancy centers in distinct diamond samples separated by two meters. Macroscopic solid immersion lenses are used to enhance photon collection efficiency. Quantum interference is verified by measuring a value of the second-order cross-correlation function g((2))(0)=0.35±0.04<0.5. In addition, optical transition frequencies of two separated nitrogen-vacancy centers are tuned into resonance with each other by applying external electric fields. An extension of the present approach to generate entanglement of remote solid-state qubits is discussed.  相似文献   

19.
An increase in the ionoluminescence intensity from a ZnS-CdS:Ag sample by a factor of more than 20 upon additional electronic excitation by UV light has been found. The effect decreases in magnitude with an increase in the energy of bombarding H2+ ions and peaks at an energy below 175 eV. This effect manifests itself in samples having a system of shallow electron traps and is due to the relaxation of highly excited anharmonic atomic vibrations, caused by the ion impact, through the electronic channel. A mechanism is proposed and computed for the phenomenon revealed.  相似文献   

20.
We have measured quantum interference between two single microwave photons trapped in the same superconducting resonator, whose frequencies are initially about 6 GHz apart. We accomplish this by use of a parametric frequency conversion process that mixes the mode currents of two cavity harmonics through a superconducting quantum interference device, and demonstrate that a two-photon entanglement operation can be performed with high fidelity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号