首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the formation of silicone oil coating on negatively charged hydrophilic surfaces via emulsion deposition. Cationic surfactants usually adsorb and form bilayers onto negative surfaces. As a result, direct emulsions stabilized with cationic surfactants are paradoxically poorly efficient at coating negative substrates. We show in this work an alternative and new method, still based on electrostatic attractions, to coat negative substrates. Our method consists of using emulsions stabilized with nonionic surfactants and of adding to the oil cationic additives that are non-water-soluble and of high molecular weight to minimize their solubilization in the micelles formed by the neutral surfactant. The positively charged droplets stick efficiently onto the substrates. They form monolayer and uniform coatings. We study the kinetics and the density of the resulting coating using a flow cell experiment. This technique allows us to finely analyze the influence of several physicochemical parameters.  相似文献   

2.
We produced triglyceride-in-water emulsions comprising partially crystallized droplets, stabilized by a mixture of protein and low molecular weight surfactant. The emulsions were emulsified in the melted state of the oil phase and stored at low temperature (4 degrees C) right after fabrication to induce oil crystallization. The systems were then warmed to room temperature for a short period of time and cooled again to 4 degrees C. Owing to this treatment referred to as temperature cycling or "tempering", the initially fluid emulsions turned into hard gels. We followed the bulk rheological properties of the materials during and after tempering. The storage modulus, G', exhibited a dramatic increase when tempering was applied. We showed that the systems evolved following two distinct regimes that depend on the average droplet size and on the surfactant-to-protein molar ratio. Gelling may involve partial coalescence of the droplets, i.e., film rupturing with no further shape relaxation because of the solid nature of the droplets. Alternatively, gelling may occur without film rupturing, and is reminiscent of a jamming transition induced by surface roughness. We discussed the origin of these two mechanisms in terms of the properties (size and protuberance) of the interfacial oil crystals.  相似文献   

3.
Small scale water-in-silicone oil emulsions were readily prepared using high speed mixers. Two surfactant systems were studied: a comb-type silicone-polyether surfactant, and a surfactant system employing a mixture of the surface active protein human serum albumin (HSA, in the internal phase) and an alkoxysilane-modified silicone TES-PDMS in the silicone oil (continuous phase). Little difference in particle sizes was noted between the two surfactant types for a given mixing protocol, but dual-blade turbulent mixing led to relatively monodisperse particles of approximately 2–5 m in diameter while high speed Dremel mixers led to bimodal particle distributions. Prior to spontaneous demulsification of the latter emulsions stabilized by HSA/TES-PDMS (the 3225C emulsions remain stable), they proved very difficult to break. The addition of dibutyltin dilaurate to the HSA/TES-PDMS-stabilized emulsions led to catastrophic collapse of the emulsion and formation of a silicone elastomer at the bulk water/oil interface. This makes unlikely the possibility that silicone elastomers, formed by protein-catalyzed crosslinking of the alkoxysilane in albumin/TES-PDMS-stabilized emulsions, are involved in stabilizing the emulsion. The nature of the stabilization of the interface is discussed.  相似文献   

4.
We have studied polydimethylsiloxane (PDMS)-in-1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) Pickering emulsions stabilized by polystyrene microparticles with different surface chemistry. Surprisingly, in contrast to the consensus originating from oil/water Pickering emulsions in which the solid particles equilibrate at the oil-water droplet interfaces and provide effective stabilization, here the polystyrene microparticles treated with sulfate, aldehyde sulfate, or carboxylate dissociable groups mostly formed monolayer bridges among the oil droplets rather than residing at the oil-ionic liquid interfaces. The bridge formation inhibited individual droplet-droplet coalescence; however, due to low density and large volume (thus the buoyant effect), the aggregated oil droplets actually promoted oil/ionic liquid phase separation and distressed emulsion stability. Systems with binary heterogeneous polystyrene microparticles exhibited similar, even enhanced (in terms of surface chemistry dependence), bridging phenomenon in the PDMS-in-[BMIM][PF(6)] Pickering emulsions.  相似文献   

5.
Solid-stabilized emulsions are obtained by shearing a mixture of oil, water, and solid colloidal particles. In this article, we present a large variety of materials, resulting from a limited coalescence process. Direct (o/w), inverse (w/o), and multiple (w/o/w) emulsions that are surfactant-free and monodisperse were produced in a very wide droplet size range, from micrometers to centimeters. These materials exhibit original properties compared with surfactant-stabilized emulsions: outstanding stability with respect to coalescence and unusual rheological behavior. For such systems, the elastic storage modulus G' is not controlled by interfacial tension but by the interfacial elasticity resulting from the strong adhesion between the solid particles adsorbed at the oil-water interface. Due to the wide accessible droplet size range, concentrated emulsions can be extremely fluid while emulsions with low droplet volume fraction can behave as solids.  相似文献   

6.
Water and oil transport in emulsified systems is far from being elucidated. Calorimetric analysis has proved to be an appropriate technique to study composition ripening in mixed water in oil emulsions. In this article, the role of the stabilizing agent is studied and particular attention is given to emulsions stabilized solely with solid particles. Mixed emulsions are prepared by mixing two simple water-in-oil (W/O) emulsions, one with pure water droplets and one with droplets containing an aqueous urea solution. At different time intervals, a sample is introduced in a calorimeter cell and submitted to successive cooling and heating cycles. During the cooling phase, the aqueous internal phase solidifies at a temperature which depends on its composition. Just after the mixed emulsion was prepared, the calorimetric experiment identified two solidification peaks, one corresponding to pure water droplets, and the other one to urea solutions. After a long enough stabilization time, just one peak was observed, showing that the systems evolved toward one type of droplets characterized by a unique composition, due to water transfer between the two aqueous phases. The effect of emulsion stabilizing agent (particles or nonionic emulsifier) on the kinetics of water transfer was investigated.  相似文献   

7.
We fabricate oil-in-water emulsions above the melting temperature of the oil phase (hexadecane and/or paraffin). Upon cooling, the oil droplets crystallize and the initially fluid emulsions turn into hard gels. The systems evolve by following two distinct regimes that depend on the average droplet size and on the oil nature. In some cases gelling involves partial coalescence of the droplets, i.e., film rupturing with no further shape relaxation because of the solid nature of the droplets. In some other cases, gelling occurs without film rupturing and is reminiscent of a jamming transition induced by surface roughness. We prepare blends of oils having different melting temperatures, and we show that it is possible to reinforce the gel stiffness by applying a temperature cycle that produces partial melting of the crystal mass, followed by recrystallization.  相似文献   

8.
We studied oil in water Pickering emulsions stabilized by cellulose nanocrystals obtained by hydrochloric acid hydrolysis of bacterial cellulose. The resulting solid particles, called bacterial cellulose nanocrystals (BCNs), present an elongated shape and low surface charge density, forming a colloidal suspension in water. The BCNs produced proved to stabilize the hexadecane/water interface, promoting monodispersed oil in water droplets around 4 μm in diameter stable for several months. We characterized the emulsion and visualized the particles at the surface of the droplets by scanning electron microscopy (SEM) and calculated the droplet coverage by varying the BCN concentration in the aqueous phase. A 60% coverage limit has been defined, above which very stable, deformable droplets are obtained. The high stability of the more covered droplets was attributed to the particle irreversible adsorption associated with the formation of a 2D network. Due to the sustainability and low environmental impact of cellulose, the BCN based emulsions open opportunities for the development of environmentally friendly new materials.  相似文献   

9.
This article deals with a model mixed oil-in-water (O/W) emulsion system developed to study the effect of surfactants on mass transfer between dispersed oil droplets of different composition. In this purpose, our goal was to formulate O/W emulsions without any surface active agents as stabilizer, which was achieved by replacing surfactants by a mixture of hydrophilic/hydrophobic silica particles. Then, to study the specific role of surfactants in the oil transfer process, different types and concentrations of surfactants were added to the mixed emulsion after its preparation. In such a way, the same original emulsion can be used for all experiments and the influence of various surface active molecules on the oil transfer mechanism can be directly studied. The model mixed emulsion used consists of a mixture of hexadecane-in-water and tetradecane-in-water emulsions. The transfer between tetradecane and hexadecane droplets was monitored by using differential scanning calorimetry, which allows the detection of freezing and melting signals characteristic of the composition of the dispersed oil droplets. The results obtained showed that it is possible to trigger the transfer of tetradecane towards hexadecane droplets by adding surfactants at concentrations above their critical micellar concentration, measured in presence of solid particles, through micellar transport mechanism.  相似文献   

10.
贺拥军  齐随涛  赵世永 《化学进展》2007,19(9):1443-1448
本文在介绍常规乳状液、微乳液和固体稳定乳液的基础上,着重综述了纳米粒子稳定乳液的特点及其在纳米结构合成中的应用进展,并对目前该研究领域亟待解决的问题进行了分析。纳米粒子稳定乳液具有独特的油、水、固三相环境和水油、水固、油固三个相界面,分散相液滴尺寸可以在微米、亚微米乃至纳米尺度调节,因而可以作为合成组成、结构和性能极为丰富多样的纳米结构的介质。纳米粒子对乳液稳定作用的机理,以及纳米粒子稳定乳液中化学反应的特殊规律还有待深入研究。本文在介绍固体稳定乳液的基础上,着重综述了纳米粒子稳定乳液的特点及其在纳米结构合成中的应用进展,并对目前该研究领域亟待解决的问题进行了分析。纳米粒子稳定乳液具有独特的油、水、固三相环境和水油、水固、油固三个相界面,分散相液滴尺寸可以在微米、亚微米乃至纳米尺度调节,因而可以作为合成组成、结构和性能极为丰富多样的纳米结构的介质。纳米粒子对乳液稳定作用的机理,以及纳米粒子稳定乳液中化学反应的特殊规律还有待深入研究。  相似文献   

11.
Multiple water-in-oil-in-water (W/O/W) emulsions offer a huge potential as encapsulation systems in different food, cosmetic, and pharmaceutical applications. Because of their complex structure, however, it is difficult to characterize these systems. Typical measurement techniques to determine the size and stability of the inner water droplets encapsulated in the oil droplets show limitations and inaccuracies. Determining the total amount of water in the inner droplets is most often done by indirect methods to date. We describe an analytical method based on differential scanning calorimetry (DSC) for characterizing the total amount of encapsulated water droplets and their stability in W/O/W multiple emulsions. It uses the possibility to directly determine the latent heat of freezing of water droplets of the same size and composition as in the multiple emulsions. The amount of water in the inner droplets of a W/O/W emulsion can thus be calculated very accurately. It is shown that this method enables furthermore detecting multi-modalities in the size distribution of inner water droplets in W/O/W emulsions. Changes in droplet size distribution of the inner droplets occurring during the second emulsification step of processing or during storage can be detected. DSC thus offers a powerful tool to characterize the structure of multiple W/O/W emulsions.  相似文献   

12.
The thickening properties of aqueous solutions of HHM-HEC (hydrophobically-hydrophilically modified hydroxyethylcellulose) and the emulsification mechanisms of HHM-HEC/water/oil systems were investigated. A dramatic increase in viscosity was observed with increased HHM-HEC concentration in water, caused by aggregation of hydrophobic alkyl chains. At higher concentrations of HHM-HEC (above 0.6 wt%) in water, it forms an elastic gel, which has good thixotropic properties and a high yield value. O/W (oil-in-water) type emulsions were obtained using HHM-HEC, which can emulsify various kinds of oil, including hydrocarbon, silicone, and perfluoropolymethylisopropyl ether. The viscosity of these emulsions depends only upon the oil volume fraction, not on the kind of oil. In addition, the oil particle size in the emulsions remained constant after a certain period because HHM-HEC formed a strong gel network structure and a protective layer, which prevented the emulsion from coalescing. Measurements of interfacial tension revealed that the alkyl chains in HHM-HEC did not significantly lower the interfacial tension at the water/oil interface when 0.5 wt% of HHM-HEC was added to water. Steady flow and oscillatory experimental results show that the rheological behavior of HHM-HEC/water/oil emulsions was similar to that of aqueous solutions of HHM-HEC. In the HHM-HEC/water/oil emulsion system, oil droplets were dispersed and kept stable in the strong gel structure of HHM-HEC. The aqueous solution of HHM-HEC showed salt resistance. It is thought to be due to sulfonic acid groups in HHM-HEC. The stability of the emulsion using HHM-HEC is based on both protective colloidal effects and associative thickening caused by alkyl chains in HHM-HEC.  相似文献   

13.
When a droplet approaches a solid surface, the thin liquid film between the droplet and the surface drains until an instability forms and then ruptures. In this study, we utilize microfluidics to investigate the effects of film thickness on the time to film rupture for water droplets in a flowing continuous phase of silicone oil deposited on solid poly(dimethylsiloxane) (PDMS) surfaces. The water droplets ranged in size from millimeters to micrometers, resulting in estimated values of the film thickness at rupture ranging from 600 nm down to 6 nm. The Stefan-Reynolds equation is used to model film drainage beneath both millimeter- and micrometer-scale droplets. For millimeter-scale droplets, the experimental and analytical film rupture times agree well, whereas large differences are observed for micrometer-scale droplets. We speculate that the differences in the micrometer-scale data result from the increases in the local thin film viscosity due to confinement-induced molecular structure changes in the silicone oil. A modified Stefan-Reynolds equation is used to account for the increased thin film viscosity of the micrometer-scale droplet drainage case.  相似文献   

14.
The migration of emulsion droplets under shear flow remains a largely unexplored area of study, despite the existence of an extensive literature on the analogous problem of solid particle migration. A novel methodology is presented to track the shear-induced migration of emulsion droplets based on magnetic resonance imaging (MRI). The work is in three parts: first, single droplets of one Newtonian fluid are suspended in a second Newtonian fluid (water in silicone oil (PDMS)) and are tracked as they migrate within a Couette cell; second, the migration of emulsion droplets in Poiseuille flow is considered; third, water-in-silicone oil emulsions are sheared in a Couette cell. The effect of (a) rotational speed of the Couette, (b) the continuous phase viscosity, and (c) the droplet phase concentration are considered. The equilibrium extent of migration and rate of migration increase with rotational speed for two different emulsion systems and increased continuous phase viscosity, leads to a greater equilibrium extent of migration. The relationship between the droplet phase concentration and migration is however complex. These results for semi-concentrated emulsion systems and wide-gap Couette cells are not well described by existing models of emulsion droplet migration.  相似文献   

15.
To overcome easy oil fouling and poor efficiency of traditional oil/water separation materials, superhydrophilic and superoleophobic coatings were fabricated by spray casting chitosan (CTS)-based nanocomposites. The molecular rearrangement of hydrophilic and oleophobic constituents, combined with the hierarchical rough surface structures, enabled a coating with a water contact angle of 0° and a hexadecane contact angle of 157° ± 1°. Hexadecane droplets can easily slide off the dried and water-wetted coating without leaving any obvious oily trailing stains. When the superhydrophilic and superoleophobic CTS-based nanocomposite coatings were applied to oil/water separation, they exhibited excellent anti-fouling capacity, high separation efficiency and easy recyclability. The superhydrophilic and superoleophobic CTS-based coating would be a good candidate for the treatment of industrial oil-polluted water and the cleanup of oil spills.  相似文献   

16.
The ternary phase diagram for N-[3-lauryloxy-2-hydroxypropyl]-L-arginine L-glutamate (C12HEA-Glu), a new amino acid-type surfactant, /oleic acid (OA)/water system was established. The liquid crystal and gel complex formations between C12HEA-Glu and OA were applied to a preparation of water-in-oil (W/O) emulsions. Stable W/O emulsions containing liquid paraffin (LP) as the oil and a mixture of C12HEA-Glu and OA as the emulsifier were formed. The preparation of stable W/O emulsions containing 85 wt% water phase was also possible, in which water droplets would be polygonally transformed and closely packed, since the maximum percentage of inner phase is 74% assuming uniformly spherical droplets. Water droplets would be taken into the liquid crystalline phase (or the gel complex) and the immovable water droplets would stabilize the W/O emulsion system. The viscosity of emulsions abruptly increased above the 75 wt% water phase (dispersed phase). The stability of W/O emulsions with a lower weight ratio of OA to C12HEA-Glu and a higher ratio of water phase was greater. This unusual phenomenon may be related to the formation of a liquid crystalline phase between C12HEA-Glu and OA, and the stability of the liquid crystal at a lower ratio of oil (continuous phase). W/O and oil-in-water (O/W) emulsions containing LP were selectively prepared using a mixture of C12HEA-Glu and OA since the desirable hydrophile-lipophile balance (HLB) number for the emulsification was obtainable by mixing the two emulsifiers.  相似文献   

17.
Spreading of partially crystallized oil droplets on an air/water interface   总被引:3,自引:0,他引:3  
The influence of crystalline fat on the amount and rate of oil spreading out of emulsion droplets onto either a clean or a protein-covered air/water interface was measured for β-lactoglobulin stabilized emulsions prepared with either anhydrous milk fat or a blend of hydrogenated palm fat and sunflower oil. At a clean interface, liquid oil present in the emulsion droplets was observed to completely spread out of the droplets unimpeded by the presence of a fat crystal network. Further, the presence of a fat crystal network in the emulsion droplets had no effect on the rate of oil spreading out of the droplets. At a protein-covered interface, the spreading behavior of emulsion droplets containing crystalline fat was evaluated in terms of the value of the surface pressure (ΠAW) at the point of spreading; ΠAW at spreading was unaffected by the presence of crystalline fat. We conclude it is unlikely that the role of crystalline fat in stabilizing aerated emulsions such as whipped cream is to reduce oil spreading at the air/water interface. However, the temperature of the system did have an effect: spontaneous spreading of emulsion droplets at clean air/water interfaces occurred for systems measured at 5 °C, but not for those measured at 22 or 37 °C. Thus, temperature may play a more important role in the whipping process than commonly thought: the entering and spreading of emulsion droplets was favored at lower temperatures because the surface pressure exerted by protein adsorbed at the air/water interface was reduced. This effect may facilitate the whipping process.  相似文献   

18.
Epoxy resins coatings are commonly found in corrosion protection coatings but the presence of water can affect their adhesion to the substrate, often weakening the adhesion of the coating to the solid, reducing its efficiency. Nevertheless, small amounts of water can enhance the epoxy/substrate interactions. In this work, the interphase region of an epoxy precursor and metal oxide substrates is investigated using molecular simulations and it is found that water accumulates between the epoxy layer and the solid substrate. At high water concentrations (9 wt %) the interaction between the epoxy precursor and the solid surface is weakened regardless of the nature of the solid, but at low water concentrations the nature of the solid surface becomes important. For hematite, the presence of water decreases the strength of adhesion but for goethite the presence of a small amount of water (3 wt %) enhances the adhesion to the surface resulting in a densification at the interface.  相似文献   

19.
Microchannel (MC) emulsification is a novel technique for preparing monodispersed emulsions. This study demonstrates preparing water-in-oil-in-water (W/O/W) emulsions using MC emulsification. The W/O/W emulsions were prepared by a two-step emulsification process employing MC emulsification as the second step. We investigated the behavior of internal water droplets penetrating the MCs. Using decane, ethyl oleate, and medium-chain triglyceride (MCT) as oil phases, we observed successful MC emulsification and prepared monodispersed oil droplets that contained small water droplets. MC emulsification was possible using triolein as the oil phase, but polydispersed oil droplets were formed from some of the channels. No leakage of the internal water phase was observed during the MC emulsification process. The internal water droplets penetrated the MC without disruption, even though the internal water droplets were larger than the resulting W/O/W emulsion droplets. The W/O/W emulsion entrapment yield was measured fluorometrically and found to be 91%. The mild action of droplet formation based on spontaneous transformation led to a high entrapment yield during MC emulsification.  相似文献   

20.
将二氧化硅纳米颗粒和硅树脂制成混合液,采用喷涂法(spray-coating)制备出了具备超疏水性的复合涂层.研究了二氧化硅、硅树脂不同含量配比对涂层疏水性能的影响,结果表明复合涂层的接触角随二氧化硅含量的增加而增加.在二氧化硅含量大于3%(质量分数)时,涂层显现超疏水性;当二氧化硅含量为3%(质量分数)、硅树脂含量为7%(质量分数)时,涂层与水的接触角达到151.6°,滚动角接近0°.通过扫描电子显微镜(SEM)观察涂层表面的微观结构,发现超疏水性的涂层具备微-纳复合阶层结构,类球状突起粒径在5μm左右,类球状突起上分布纳米团聚颗粒,直径约为50 nm.这种类似荷叶表面的微(纳复合阶层结构,结合硅树脂的低表面能,使得复合涂层具备了超疏水性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号