首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Customized-shaped-monolithic YBaCuO (YBCO) were produced applying the top-seeded-melt-growth (TSMG) method. These high-temperature superconductors (HTSCs) are single-domain monoliths according to optical microscopy, X-ray diffraction, neutron diffraction, as well as Hall probe measurements. The trapped magnetic induction of such a single-domain monolith at 77 K usually well exceeds 600 mT. An external scan of the remanent induction of a 17 mm×17 mm×8 mm large-single-domain sample at 77 K yields a record value of 865 mT. The zero-field-cooled (zfc) levitation forces of standard samples (38 mm×38 mm×12 mm) at 77 K typically amount to 60–70 N. Actually, 16 units with these standard sizes of the quality described can be produced in one batch. Furthermore, YBCO monoliths with diameters up to 130 mm were successfully melt-textured.  相似文献   

2.
We have developed a Transition Edge Sensor (TES) – Energy Dispersive Spectroscopy (EDS) for Transmission Electron Microscope (TEM) based on a dilution refrigerator. The dilution refrigerator was cooled by liquid helium (L-He), which was supplied from an L-He container separated from the dilution refrigerator. We adopted the hybrid magnetic shields combining a permalloy shield and a NbTi/Nb/Cu superconducting shield to operate the TEM–TES system under a magnetic field of 200 mT. The permalloy shield was used to prevent the ambient magnetic field until the NbTi superconducting shield cooled from room temperature (RT) to 2 K. The critical magnetic field was 220 mT for the TES change from a superconducting state to a normal state. The SQUID – current vs. bias current curve, under the condition that the snout was inserted in the TEM, was equal to the curve of the snout that was out of the TEM. The C (0 0 2) planes could be observed at 120 kV under the condition the snout was inserted in the TEM.  相似文献   

3.
Fe2O3/SiO2 nanocomposites were synthesized by mechanical alloying, using Fe and SiO2 powders as precursors. After 340 h milling, the sample essentially consists of hematite and amorphous silica. TEM images show hematite particles embedded in and surrounded by an amorphous silica matrix. A broad size distribution—5–50 nm—of hematite particles is found, and other group of very small—2–3 nm—unidentified particles are observed. Room temperature Mössbauer spectra show a paramagnetic doublet, which may correspond to a non-crystalline phase in the sample (probably the small unidentified particles), and a sextet corresponding to hematite. Magnetic properties were investigated by measuring hysteresis curves at different temperatures (5–300 K) and by zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves (10 mT). The hysteresis loops were well fitted by a ferromagnetic contribution. No evidence of Morin transition is found down to 5 K.  相似文献   

4.
Magnetotransport at fields up to 500 mT and LF-noise characteristics are reported for miniature magnetoresistors with ferrite concentrators based on Sn-doped n-InSb/i-GaAs heterostructures grown by MBE. The thickness of the InSb epilayers lie in the range 0.55–1.5 μm giving room temperature mobilities of 2.5–5.5 m2 V−1 s−1 with carrier densities of (0.5–1.5)×1017 cm−3. The room temperature magnetoresistance (MR) for our two terminal devices could be as high as 115% at 50 mT which is comparable to the extraordinary MR (ExMR) recently reported in microscopic composite van der Pauw disks four terminal devices [Science 289 (2000) 1530]. In addition, a high signal-to-noise ratio and a good temperature stability of R(B)/R0=0.5–0.83% K−1 was observed for B<60 mT (below the saturation field Bsat for ferrite). Device resistance stability R0(T) was equal to 0.27–0.66% K−1 in zero field with a nominal device resistance R0=197–224 Ω for DC currents in the range I=0.01–1.0 mA. The minimum detectable magnetic field is estimated from the reduced differential MR (∂R/∂B)/R=2000% T−1 at B=31 mT and normalised 1/f current noise power spectral density measured at the same field. The resolution limit Bmin=2.6 nT at 102 Hz and Bmin=0.82 nT at 103 Hz. These resolution limits are seven times better than those recently reported for the same material n-InSb/i-GaAs and ferrite fabricated Hall sensors [Magnetotransport and Raman characterization of n-InSb/i-GaAs epilayers, for Hall sensors applications over extremely wide ranges of temperature and magnetic field, Proceedings NGS 10, IPAP Conference Series 2, IPAP, Tokyo, 2001, pp. 151–154].  相似文献   

5.
Silicon nanostructures, called Si nanowhiskers, have been successfully synthesized on Si(1 0 0) substrate by high vacuum electron beam annealing (EBA). Detailed analysis of the Si nanowhisker morphology depending on annealing temperature, duration and the temperature gradients applied in the annealing cycle is presented. A correlation was found between the variation in annealing temperature and the nanowhisker height and density. Annealing at 935 °C for 0 s, the density of nanowhiskers is about 0.2 μm−2 with average height of 2.4 nm grow on a surface area of 5×5 μm, whereas more than 500 nanowhiskers (density up to 28 μm−2) with an important average height of 4.6 nm for field emission applications grow on the same surface area for a sample annealed at 970 °C for 0 s. At a cooling rate of −50 °C s−1 during the annealing cycle, 10–12 nanowhiskers grew on a surface area of 5×5 μm, whereas close to 500 nanowhiskers grew on the same surface area for samples annealed at the cooling rate of −5 °C s−1. An exponential dependence between the density of Si nanowhiskers and the cooling rate has been found. At 950 °C, the average height of Si nanowhiskers increased from 4.0 to 6.3 nm with an increase of annealing duration from 10 to 180 s. A linear dependence exists between the average height of Si nanowhiskers and annealing duration. Selected results are presented showing the possibility of controlling the density and the height of Si nanowhiskers for improved field emission properties by applying different annealing temperatures, durations and cooling rates.  相似文献   

6.
Single phase BaM (BaFe12O19) ferrites are prepared by using sol–gel method. The preparing conditions of samples are investigated in detail, such as acid/nitrate ratio, the value of pH and annealing temperature. The best conditions on preparing BaFe12O19, which can be obtained on a Fe/Ba ratio of 12, the citric acid contents R = 3, the starting pH of solution is 9, and annealing temperature 950 °C. The thermal decomposition behavior of the dried gel was examined by TG–DSC, the structure and properties of powders were measured respectively by XRD techniques. The magnetic properties of barium ferrites are emphatically researched about the changing crystallite size and annealing temperature by the vibrating sample magnetometer (VSM). Magnetic measurement shows that the barium ferrite samples annealed at 1000 °C has the maximal coercive field of 5691.91 Oe corresponding to the maximal remnant magnetization of 35.60 emu/g and the sample synthesized at 1000 °C has the maximal saturation magnetization of 60.75 emu/g.  相似文献   

7.
Nanocrystalline Mg–Zn-ferrite is prepared by ball milling the stoichiometric powder mixture of MgO, ZnO and α-Fe2O3. A non-stoichiometric ferrite phase is noticed to form after 3 h of milling when particles of starting materials became nano-sized. After 25 h of milling, stoichiometric ferrite phase is formed with 9 nm particle size. Post annealing study of ball-milled sample reveals that the nanocrystalline ferrite phase is stable up to 873 K and then starts to decompose into individual starting phases. However, heat treatment of unmilled stoichiometric powder mixture even at 1473 K for 1 h duration does not result in formation of stoichiometric Mg–Zn-ferrite phase.  相似文献   

8.
The Hall mobility of undoped n-type conducting SrTiO3 single crystals was investigated in a temperature range between 19 and 1373 K. Field calculations were used to estimate the influence of sample shape and electrode geometry on the measured values. Between 19 and 353 K samples, which were quenched under reducing conditions, show an impurity scattering behavior at low temperature and high carrier concentrations and a phonon scattering mechanism at room temperature. In this temperature region, no carrier-density-dependent mobility was found. In conjunction with measurements of the mass difference before and after reoxidation, the oxygen deficiency and the oxygen vacancy concentration could be determined. The oxygen vacancies proved to be singly ionized. Above 873 K, Hall mobility and carrier concentration had been determined as a function of both oxygen partial pressure and temperature for the first time. In this temperature range the mobility does not depend on carrier concentration, but shows aT –1.5 dependence.  相似文献   

9.
The K state can [1–7] have a marked effect on the mechanical parameters of homogeneous solid solutions containing transition elements. The K state is seen as a rise in resistance in low-temperature annealing after quenching from high temperatures and has been ascribed to the formation of short-range order [4, 5, 8–10] or of imperfect long-range order [6, 7]. The mechanical properties are also substantially affected. We have examined the effects on the dislocation starting stress as a function of temperature, as measured by mechanical hysteresis [18–20], in the K state range for Ni+17% Cr.  相似文献   

10.
Sputtered Cr/n-GaAs Schottky diodes have been prepared and annealed at 200 and 400 °C. The current–voltage (I–V) characteristics of the as-deposited and annealed diodes have been measured in the temperature range of 60–320 K with steps of 20 K. The effect of thermal annealing on the temperature-dependent I–V characteristics of the diodes has been investigated experimentally. The ideality factor and barrier height (BH) values for 400 °C annealed diode approximately remain unchanged from 120 to 320 K, and those of the as-deposited sample from 160 to 320 K. The departures from ideality at low temperatures have been ascribed to the lateral fluctuations of the BH. The BH values of 0.61 and 0.74 eV for the as-deposited and 400 °C annealed diodes were obtained at room temperature, respectively. A Richardson constant value of 9.83 A cm−2 K−2 for 400 °C annealed Schottky diode, which is in close agreement with the known value of 8.16 A cm−2 K−2 for n-type GaAs. Furthermore, T0 anomaly values of 15.52, 10.68 and 5.35 for the as-deposited and 200 and 400 °C annealed diodes were obtained from the nT versus T plots. Thus, it has been seen that the interface structure and quality improve by the thermal annealing at 400 °C.  相似文献   

11.
The characteristics of char particles and their effects on the emission of particulate matter (PM) from the combustion of a Chinese bituminous coal were studied in a laboratory-scale drop tube furnace. The raw coal was pulverized and divided into three sizes, <63, 63–100, and 100–200 μm. These coal samples were subjected to pyrolysis in N2 and combusted in 20 and 50% O2 at 1373, 1523, and 1673 K, respectively. Char samples were obtained by glass fiber filters with a pore size of 0.3 μm, and combustion-derived PM was size-segregated by a low pressure impactor (LPI) into different sizes ranging from 10.0 to 0.3 μm. The characteristics of char particles, including particle size distribution, surface area, pore size distribution, swelling behavior and morphology property, were studied. The results show that, coal particle size and pyrolysis temperature have significant influence on the char characteristics. The swelling ratios of char samples increase with temperature increasing from 1373 to 1523 K, then decrease when the temperature further increases to 1623 K. At the same temperature, the swelling ratios of the three size fractions are markedly different. The finer the particle size, the higher the swelling ratio. The decrease of swelling ratio at high temperature is mainly attributed to the high heating rate, but char fragmentation at high temperature may also account for the decrease of swelling ratio. The supermicron particles (1–10 μm) are primarily spherical, and most of them have smooth surfaces. Decreasing coal particle size and increasing the oxygen concentration lead to more supermicron-sized PM formation. The influence of combustion temperature on supermicron-sized PM emission greatly depends on the oxygen concentration.  相似文献   

12.
Ceria coatings were applied in order to improve the adherence of alumina scales developed on a model Fe–20Cr–5Al alloy during oxidation at high temperature. These coatings were performed by argon annealing of a ceria sol–gel coating at temperatures ranging between 600 and 1000 °C. The influence of these coatings on the alloy oxidation behaviour was studied at 1100 °C. In situ X-ray diffraction (XRD) was performed to characterize the coating crystallographic nature after annealing and during the oxidation process. The alumina scale morphologies were studied by means of scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS). The present work shows that the alumina scale morphology observed on cerium sol–gel coated alloy was very convoluted. On the cerium sol–gel coated alloy, argon annealing results in an increase of the oxidation rate in air, at 1100 °C. The 600 °C argon annealing temperature results in a good alumina scale adherence under thermal cycling conditions at 1100 °C.  相似文献   

13.
We have analyzed the structure and properties of Y1Ba2Cu3O7–y films on (012) sapphire substrates. The films were obtained by evaporation of the metals in a UHV system with an oxygen beam directed at the substrate. Analysis was performed by X-ray diffraction and electron probe microanalysis [EPMA], after annealing in addition by scanning electron microscopy [SEM] and Auger electron spectroscopy. Without annealing no superconductivity was obtained although sufficient oxygen could be incorporated during growth. The copper does not oxidize. After annealing in oxygen superconductivity is found with an onset temperature of 80–90 K and zero resistance at 30–40 K. A grain-like pattern of 3–5 m typical size is seen. Chemical reactions between layer and substrate are observed.  相似文献   

14.
A study is made of the formation of dislocations in silicon with local damage to the surface at room temperature and subsequent annealing within the range 1073–1473 K. The damages to the surface are modeled with the use of micro-hardness indentations. Measurements of mean linear dislocation density in a ray of the indentation rosette show that the number of dislocations in the rosette is independent of both the temperature and duration of isothermal annealing. It was found that annealing at 573–773 K leads to partial relaxation of elastic stresses from the indentation due to the formation of sections of silicon with a hexagonal structure near the indentation. Further annealing at high temperatures leads to the disappearance of these sections and the formation of a normal dislocation rosette, with the number of dislocations in the rays corresponding to the case of one-stage annealing. The results are empirical confirmation of the hypothesis of incomplete shear. In accordance with the latter, dislocations are formed during deformation at room temperature, not during subsequent annealing.Zaporozh'e University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 78–82, May, 1992.  相似文献   

15.
The 77°K cathodoluminescence spectra of ZnS single crystals grown from the melt and annealed in vapors of the constituents were studied in the spectral region 360 to 550 nm. The single crystals contained oxygen whose phase state could be changed by thermal annealing. The effect of oxygen in the ZnS lattice on the appearance and intensities of various bands in the zinc sulfide spectrum was investigated. It turned out that the bands at 390–400 nm, 410–430 nm, and 500–525 nm are associated with the luminescence of a solid solution of ZnS· O in the lattice. The intensity of the green luminescence was a function of oxygen concentration in precipitates of the solid solution on dislocations. The luminescence in the 363 to 370 nm region is associated with zinc oxide which separates from ZnS containing various amounts of sulfur.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 84–88, May, 1975.  相似文献   

16.
We have investigated the relation among ρT characteristics, superconductivity, annealing conditions and the crystallinity of polycrystalline (In2O3)1−x–(ZnO)x films. We annealed as-grown amorphous films in air by changing annealing temperature and time. It is found that the films annealed at 200 °C or 300 °C for a time over 0.5 h shows the superconductivity. Transition temperature Tc and the carrier density n are Tc < 3.3 K and n ≈ 1025–1026 m−3, respectively. Investigations for films with x = 0.01 annealed at 200 °C have revealed that the Tc, n and crystallinity depend systematically on annealing time. Further, we consider that there is a suitable annealing time for sharp resistive transition because the transition width becomes wider with longer annealing times. We studied the upper critical magnetic field Hc2(T) for the film with different annealing time. From the slope of dHc2/dT for all films, we have obtained the resistivity ρ dependence of the coherence length ξ(0) at T = 0 K.  相似文献   

17.
Positron-annihilation lifetime and Doppler-broadening measurements are used to investigate defects in silicon irradiated at 373 K with 6 MeV electrons to a dose of 1×l019e/cm2. In the unirradiated silicon sample (p type) a temperature-independent behaviour of the bulk-lifetime is observed in the temperature interval 110–500 K with a constant value of 220±1 ps. The slight effect observed on the S-parameter evolution is explained taking into account the thermal expansion of the lattice. The lifetime results obtained at 80 K and at 300 K after isochronal annealing as well as the behaviour of the intensity of the second lifetime componentI 2 during lifetime measurements below the irradiation temperature in the irradiated silicon sample (n type), clearly indicate the temperature dependent characteristics of the positron trapping cross section t(T) T n withn= –1.905±0.016. From isochronal annealing results, an annealing stage is observed in which di-vacancies agglomerate into quadri-vacancies. The mean positron lifetime in those quadri-vacancies is 350 ps.A.B.O.S., on leave from University of Kinshasa, Zaïre  相似文献   

18.
A new physical approach for the design of mid-IR lasers operating at 3–5 μm based on type II heterojunctions with effective electron–hole confinement owing to a large asymmetric band-offset at the interface (ΔEC>0.6 eV and ΔEV>0.35 eV) has been proposed. The creation of high barriers for carriers leads to their strong accumulation in the active region and increases the quantum emission efficiency of the spatially separated electrons and holes across the heteroboundary due to a tunnel-injection radiative recombination mechanism within the device. An extremely weak reduction of the electroluminescence (EL) intensity for the interface tunnelling-assisted emission band with increasing temperature from 77 to 300 K was observed. This coherent emission (λ=3.146 μm at 77 K) was totally polarised in the plane perpendicular to the p–n heterojunction plane, which means the laser emission was TM-polarised due to tunnelling-assisted light-hole–electron recombination across the interface.  相似文献   

19.
The adsorption and thermal decomposition of N-methylaniline (NMA) on the Pt(1 1 1) surface has been studied with reflection absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). NMA adsorbs molecularly at 85 K through the nitrogen lone pair and is stable up to 300 K. At temperatures of 300–350 K it converts to two or more surface intermediates including the N-methyleneaniline (NMEA) species. This NMEA intermediate dissociates upon annealing to 450 K, and further annealing leads to the desorption of HCN and H2, leaving only C on the surface at 800 K.  相似文献   

20.
Positive exchange bias field (He) is observed in Tb/Cr (tCr)/FeCo trilayers at 5 K without cooling field, and negative He for Tb/FeCo bilayer. The negative He of Tb/FeCo implies the FM coupling at the interface due to Co and Fe dominate in the magnetization of the ferrimagnetic interlayer alloy of FeCo and Tb. With the inserting of Cr layer, this situation is broken, and the positive He implies the antiferromagnetic interlayer coupling. A peak of He = 6.0 mT for trilayers with tCr = 1.5 nm is corresponding to the minimum value of coercivity as a function of tCr at 5 K, which is used to study the effect of the cooling field (Hfc) on He as a function of temperature. It is found that Hfc of 100 mT triggers He from positive to negative at T ≤ 15 K. The magnetoresistance results also confirm the coexistence of multiple MR mechanisms in these trilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号