首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 909 毫秒
1.
We used atomic force microscopy (AFM) to explore the antigen binding forces of individual Fv fragments of antilysozyme antibodies (Fv). To detect single molecular recognition events, genetically engineered histidine-tagged Fv fragments were coupled onto AFM tips modified with mixed self-assembled monolayers (SAMs) of nitrilotriacetic acid- and tri(ethylene glycol)-terminated alkanethiols while lysozyme (Lyso) was covalently immobilized onto mixed SAMs of carboxyl- and hydroxyl-terminated alkanethiols. The quality of the functionalization procedure was validated using X-ray photoelectron spectroscopy (surface chemical composition), AFM imaging (surface morphology in aqueous solution), and surface plasmon resonance (SPR, specific binding in aqueous solution). AFM force-distance curves recorded at a loading rate of 5000 pN/s between Fv- and Lyso-modified surfaces yielded a distribution of unbinding forces composed of integer multiples of an elementary force quantum of approximately 50 pN that we attribute to the rupture of a single antibody-antigen pair. Injection of a solution containing free Lyso caused a dramatic reduction of adhesion probability, indicating that the measured 50 pN unbinding forces are due to the specific antibody-antigen interaction. To investigate the dynamics of the interaction, force-distance curves were recorded at various loading rates. Plots of unbinding force vs log(loading rate) revealed two distinct linear regimes with ascending slopes, indicating multiple barriers were present in the energy landscape. The kinetic off-rate constant of dissociation (k(off) approximately = 1 x 10(-3) s(-1)) obtained by extrapolating the data of the low-strength regime to zero force was in the range of the k(off) estimated by SPR.  相似文献   

2.
3.
An alternative method for fabricating functionalized, atomic force microscopy (AFM) tips is presented. This technique is simple and requires only minimal preparation and tip modification to generate chemically sensitive probes that have a robust organic monolayer of flexible terminal chemistry attached to the surface. Specifically, commercially microfabricated Si3N4 AFM tips were modified with self-assembled monolayers (SAMs) of octadecyltrichlorosilane and (11-bromoundecyl)trichlorosilane after removing the native silicon oxide surface layer with concentrated hydrofluoric acid. The structure of these SAM films on solid silicon nitride surfaces was studied using contact angle goniometry and Fourier transform infrared spectroscopy. Pull-off force measurements on various bare (mica, graphite, and silicon) and SAM-functionalized substrates confirm that mechanically robust, long-chain organic silane SAMs can be formed on HF-treated Si3N4 tips without the presence of an intervening oxide layer. Adhesion experiments show that the integrity of the organic film on the chemically modified tips is maintained over repeated measurements and that the functionalized tips can be used for chemical sensing experiments since strong discrimination between different surface chemistries is possible.  相似文献   

4.
We report AFM measurements of binding events between immunoglobulin G (IgG) and protein A (PA) on the surface of live Staphylococcus aureus bacteria. The experiments were carried out with IgG molecules tethered via CM-amylose linkers to thiol SAMs on gold-coated AFM tips. For comparison, a model system consisting of protein A molecules tethered to thiol SAMs on gold-coated silicon substrates was also investigated. Histograms of binding forces for the PA-IgG bond showed comparable rupture forces of 59 and 64 pN for the model system and live bacteria, respectively. We suggest that linker molecules with a length comparable to the AFM tip radius should make it possible to detect specific binding events on the surface of live bacteria with a lateral resolution of a few tens of nanometers. Furthermore, because S. aureus is an important human pathogen, especially methicillin-resistant strains (MRSA), it is possible that additional virulence factors beyond PA can be probed using this technique.  相似文献   

5.
We have fabricated robust nanosurgical needles suitable for single cell operations by modifying multiwalled carbon nanotube (MCNT)-terminated atomic force microscopy (AFM) tips. Extra-long MCNT AFM tips were prepared and fortified with molecular layers of carbon to overcome mechanical instabilities and then coated with an outer shell of gold to promote chemical versatility. The terminal diameters of the final fabricated tips were approximately 30-40 nm, and the MCNT probes were several micrometers in length. We illustrate the capability of these modified MCNT tips to carry nanoparticulate payloads and to penetrate the plasma membrane of living pleural mesothelial cells at the smallest indentation depths (100-200 nm) and lowest penetration forces (100-200 pN) currently reported for these procedures.  相似文献   

6.
Adsorption of PHB depolymerase from Ralstonia pickettii T1 to biodegradable polyesters such as poly[(R)-3-hydroxybutyrate] (PHB) and poly(l-lactic acid) (PLLA) was investigated by atomic force microscopy (AFM). The substrate-binding domain (SBD) with histidines within the N-terminus was prepared and immobilized on the AFM tip surface via a self-assembled monolayer with a nitrilotriacetic acid group. Using the functionalized AFM tips, the force-distance measurements for polyesters were carried out at room temperature in a buffer solution. In the case of AFM tips with immobilized SBD and their interaction with polyesters, multiple pull-off events were frequently recognized in the retraction curves. The single rupture force was estimated at approximately 100 pN for both PLLA and PHB. The multiple pull-off events were recognized even in the presence of a surfactant, which will prevent nonspecific interactions, but reduced when using polyethylene instead of polyesters as a substrate. The present results provide that the PHB depolymerase adsorbs specifically to the surfaces of polyesters and that the single unbinding event evaluated here is mainly associated with the interaction between one molecule of SBD and the polymer surface.  相似文献   

7.
Failure of implanted biomaterials is commonly due to nonspecific protein adsorption, which in turn causes adverse reactions such as the formation of fibrous capsules, blood clots, or bacterial biofilm infections. Current research efforts have focused on modifying the biomaterial interface to control protein reactions. Designing biomaterial interfaces at the molecular level, however, requires an experimental technique that provides detailed, dynamic information on the forces involved in protein adhesion. The goal of this study was to develop an atomic force microscope (AFM)-based technique to evaluate protein adhesion on biomaterial surfaces. In this study, the AFM was used to evaluate (i) protein-protein, (ii) protein-substrate, and (iii) protein-dextran interactions. The AFM was first used to measure the pull-off forces between bovine serum albumin (BSA) tips/BSA surfaces and BSA tips/anti-BSA surfaces. Results from these protein-protein studies were consistent with the literature. More importantly, the successful measurement of antibody-antigen binding interactions demonstrates that both the BSA and anti-BSA proteins retain their folded conformation and remain functional following our immobilization protocol. The AFM was also used to quantify the physiochemical interactions of proteins during adhesion to various self-assembled monolayers (SAMs) and dextran-coated substrates representative of potential biomaterial interface modifications. Dextran, which renders surfaces very hydrophilic, was the only surface coating that BSA protein did not adhere to. Hydrophobic interactions were not found to play a significant role in BSA adhesion. Therefore, the dextran molecules may resist protein adhesion by repulsive steric effects or hydration pressure. Moreover, the AFM-based methodology provides dynamic, quantitative information about protein adhesion at the nanoscale level.  相似文献   

8.
国立秋  王锐  徐化明  梁吉 《分析化学》2006,34(3):359-361
电弧法自制碳纳米管原子力显微镜针尖,对其末端进行功能化修饰,然后测量配体-受体之间的作用力。运用没有功能化修饰的碳纳米管针尖与修饰有亲和素分子的基底进行接触测量时,没有粘滞力出现;而运用末端修饰生物素分子的碳纳米管针尖测量时,有粘滞力产生。功能化的碳纳米管针尖直接测得的粘滞力均大约200pN,此值符合一对配体生物素和受体亲和素之间的作用力。这一结果很难用传统的针尖获得,功能化修饰的碳纳米管针尖能够克服传统针尖在力测量中的局限,在生物学和化学领域有着广泛的应用前景。  相似文献   

9.
Phosphate-modified AFM tips were prepared by the deposition of self-assembled monolayers (SAMs) of bis(11-thioundecyl) phosphate on Au-coated silicon nitride cantilevers. The properties of the PO(2)H-terminated SAMs were investigated by studying the pH-dependent force interactions of the tips with phosphate- and carboxylic acid-terminated SAM control surfaces. The PO(2)H functional groups had a pK(a) of approximately 5.0. A chemical force microscopy (CFM) study was conducted on the interactions between the probes and the surfaces of hydrous ferric oxide particles prepared in our laboratory by hydrolytic precipitation from FeCl(3). The forces between PO(2)H probes and the hydrous ferric oxide surfaces were seen to exhibit a strong pH dependence, with maximum attractive forces occurring for pH values between 5 and 8. The effects of postprecipitation of the hydrous ferric oxide colloids with orthophosphate, H(2)PO(4)(-), dimethylphosphate, (CH(3)O)(2)PO(2)H (DMP), and tannic acid (TA) on the adhesive interactions between the PO(2)H tips and the solids were also investigated. Attenuated total reflectance infrared spectroscopy (ATR-IR) was used to verify the presence of surface-adsorbed species and zeta potentiometric measurements to determine surface charge on the colloids. We show that the method of chemical force titration using phosphate-terminated tips can differentiate between these various colloids and that it shows promise as a general method for studying this environmentally important class of compounds.  相似文献   

10.
Adhesive and frictional forces between surfaces modified with self-assembled monolayers (SAMs) and immersed in solvents were measured with chemical force microscopy as functions of surface functionality and solvent. Si/SiO2 substrates were modified with SAMs of alkylsiloxanes (SiCl3(CH2)n-X), and gold-coated AFM tips were modified with SAMs of alkylthiolates (HS-(CH2)n-X). SAMs of alkylsiloxanes terminated in a methyl or oxidized vinyl group; SAMs of alkanethiolates terminated in a methyl or carboxyl group. Adhesive and frictional forces were measured in hexadecane, ethanol, 1,2-propanediol, 1,3-propanediol, and water. The work of adhesion (W) was calculated with the Johnson-Kendall-Roberts theory of adhesive contact. The JKR values agreed well with values derived from the Fowkes-van Oss-Chaudhury-Good surface tension model and from contact angle results. Calculated values of W for all combinations of contacting surfaces and solvents spanned two orders of magnitude. W correlated with the surface tension of the solvent for hydrophobic/hydrophobic interactions; hydrophilic/hydrophilic and hydrophobic/hydrophilic interactions were more complex. Friction forces were fit to a modified form of Amonton's law. For any solvent, friction coefficients were largest for the hydrophilic/hydrophilic contacting surfaces. The friction coefficient for any contacting pair was largest in hexadecane. In polar solvents, friction coefficients scaled with solvent polarity only for hydrophobic/hydrophobic contacting pairs. Copyright 1999 Academic Press.  相似文献   

11.
The effect of condensed water on pull-off forces under high vacuum (HV) and 0 to 83% relative humidity (RH) N2 atmospheric conditions was evaluated for different contact geometries using atomic force microscopy (AFM). The pull-off force was measured using two types of contact geometry: contact between hemispherical asperities and a flat silicon probe on an AFM cantilever (called a spherical-flat contact) and between a flat silicon substrate and a flat nickel probe on an AFM cantilever (called a flat-flat contact). The hemispherical asperities were fabricated using a focused ion beam (FIB) system, and each peak had a radius of curvature of between 70 and 610 nm. The flat nickel probe was fabricated by friction-induced wear. Measurement results showed that for the spherical-flat contact the pull-off force was proportional to the radius of curvature of the asperity peak and was slightly lower in HV than in humid 14% RH N2. For the flat-flat contact in HV, with increasing contact time, the pull-off force increased in HV but decreased in humid 62 and 83% RH N2. The pull-off force in HV was lower than that in humid N2 when the contact time was less than 10 s but was higher when the contact time was longer than 30 s. The estimated adhesion force based on the Laplace pressure from the contact geometry agreed reasonably well with the measured pull-off force.  相似文献   

12.
The surface roughness of a few asperities and their influence on the work of adhesion is of scientific interest. Macroscale and nanoscale adhesion data have seemingly given inconsistent results. Despite the importance of bridging the gap between the two regimes, little experimental work has been done, presumably due to the difficulty of the experiment needed to determine how small amounts of surface roughness might influence adhesion data lying in between the two scales. To investigate the role of few-asperity contacts in adhesion, the pull-off force was measured between different sized atomic-force microscope (AFM) tips (with different roughnesses) and sample surfaces that had well-controlled material properties. There were seventeen tips of four different types, with radii from 200 nm to 60 microm. The samples were unpatterned single crystal silicon with a chemical silicon dioxide surface resulting from a standard silicon wafer clean. Some of the samples were treated with a few angstroms of vapor deposited diphenylsiloxane. We observed that the uncorrected (for surface roughness) pull-off force was independent of the radius of the AFM tip, which was contrary to all continuum-mechanics model predictions. To explain this behavior, we assumed that the interactions between the AFM tip and sample were additive, material properties were constant, and that the AFM tip, asperities, and sample surfaces were of uniform density. Based on these assumptions, we calculated a simple correction due to the measured root mean square (RMS) surface roughness of the AFM tips. The simple correction for the RMS surface roughness resulted in the expected dependence of the pull-off force on radius, but the magnitudes were higher than expected. Commercial and heat-treated AFM tips have minimal surface roughness and result in magnitudes that are more reliable. The relative uncertainty for the pull-off force was estimated to be 10%. In this paper, we derive how the cantilever and tip parameters contribute to the measured pull-off force and show how the corrected results compare with theory. Although much work is still needed, the work presented here should advance the understanding of adhesion between the macroscale and nanoscale regimes.  相似文献   

13.
Atomic force microscopy (AFM) is capable of solid surface characterization at the microscopic and submicroscopic scales. It can also be used for the determination of surface tension of solids (gamma) from pull-off force (F) measurements, followed by analysis of the measured F values using contact mechanics theoretical models. Although a majority of the literature gamma results was obtained using either Johnson-Kendall-Roberts (JKR) or Derjaguin-Muller-Toporov (DMT) models, re-analysis of the published experimental data presented in this paper indicates that these models are regularly misused. Additional complication in determination of gamma values using the AFM technique is that the measured pull-off forces have poor reproducibility. Reproducible and meaningful F values can be obtained with strict control over AFM experimental conditions during the pull-off force measurements (low humidity level, controlled and known loads) for high quality substrates and probes (surfaces should be free of heterogeneity, roughness, and contamination). Any probe or substrate imperfections complicate the interpretation of experimental results and often reduce the quality of the generated data. In this review, surface imperfection in terms of roughness and heterogeneity that influence the pull-off force are analyzed based upon the contact mechanics models. Simple correlations are proposed that could guide in selection and preparation of AFM probes and substrates for gamma determination and selection of loading conditions during the pull-off force measurements. Finally, the possibility of AFM measurements of solid surface tension using materials with rough surfaces is discussed.  相似文献   

14.
Atomic force microscopy (AFM) was used to explore the changes that occur in Escherichia coli ZK1056 prey cells while they are being consumed by the bacterial predator Bdellovibrio bacteriovorus 109J. Invaded prey cells, called bdelloplasts, undergo substantial chemical and physical changes that can be directly probed by AFM. In this work, we probe the elasticity and adhesive properties of uninvaded prey cells and bdelloplasts in a completely native state in dilute aqueous buffer without chemical fixation. Under these conditions, the rounded bdelloplasts were shown to be shorter than uninvaded prey cells. More interestingly, the extension portions of force curves taken on both kinds of cells clearly demonstrate that bdelloplasts are softer than uninvaded prey cells, reflecting a decrease in bdelloplast elasticity after invasion by Bdellovibrio predators. On average, the spring constant of uninvaded E. coli cells (0.23 +/- 0.02 N/m) was 3 times stiffer than that of the bdelloplast (0.064 +/- 0.001 N/m) when measured in a HEPES-metals buffer. The retraction portions of the force curves indicate that compared to uninvaded E. coli cells bdelloplasts adhere to the AFM tip with much larger pull-off forces but over comparable retraction distances. The strength of these adhesion forces decreases with increasing ionic strength, indicating that there is an electrostatic component to the adhesion events.  相似文献   

15.
A series of donor-acceptor molecules, featuring intense low-energy intramolecular charge-transfer bands, was prepared by regioselective [2 + 2] cycloaddition between 7,7,8,8-tetracyanoquinodimethane (TCNQ) and N,N-dialkylanilino-substituted (DAA-substituted) alkynes, followed by ring opening of the initially formed cyclobutenes.  相似文献   

16.
Electrical and mechanical properties of metal-molecule-metal junctions formed between Au-supported self-assembled monolayers (SAMs) of electroactive 11-ferrocenylundecanethiol (FcC(11)SH) and a Pt-coated atomic force microscope (AFM) tip have been measured using a conducting probe (CP) AFM in insulating alkane solution. Simultaneous and independent measurements of currents and bias-dependent adhesion forces under different applied tip biases between the conductive AFM probe and the FcC(11)SH SAMs revealed reversible peak-shaped current-voltage (I-V) characteristics and correlated maxima in the potential-dependent adhesion force. Trapped positive charges in the molecular junction correlate with high conduction in a feature showing negative differential resistance. Similar measurements on an electropassive 1-octanethiol SAM did not show any peaks in either adhesion force or I-V curves. A mechanism involving two-step resonant hole transfer through the occupied molecular orbitals (MOs) of ferrocene end groups via sequential oxidation and subsequent reduction, where a hole is trapped by the phonon relaxation, is proposed to explain the observed current-force correlation. These results suggest a new approach to probe charge-transfer involving electroactive groups on the nanoscale by measuring the adhesion forces as a function of applied bias in an electrolyte-free environment.  相似文献   

17.
针尖化学方法研究单壁碳纳米管末端羧基的解离性质   总被引:2,自引:0,他引:2  
针尖化学利用化学手段对扫描探针显微镜 ( SPM)的针尖进行功能化修饰 ,将其作为化学反应的“探针”用于研究表面的局域化学反应性质、跟踪表面发生的化学反应过程等 [1] .用针尖化学技术来研究自组装膜 ( SAMs)表面酸碱基团的局域解离性质 ,称之为化学力滴定 [2~ 8] .利用表面缩合方法将单壁碳纳米管短管组装到 AFM针尖上 ,通过测定针尖上碳纳米管的末端基团与羟基自组装膜表面之间的粘滞力 ,研究碳纳米管末端羧基的解离性质 ,可得到碳纳米管结构与化学性质的信息 .1 实验部分1 .1 碳纳米管针尖和羟基末端自组装膜的制备 基底 [Si( …  相似文献   

18.
Mixed self-assembled monolayers formed by the coadsorption of hydroxyl- and methyl-terminated alkanethiols with similar chain lengths have been characterized by friction force microscopy. Friction coefficients have been determined by assuming a fit to Amonton's law. The friction coefficients vary linearly with the fraction of polar-terminated adsorbates in the self-assembled monolayer (SAM). With carboxylic acid-terminated tips, the coefficient of friction increases with the fraction of hydroxyl-terminated thiols, while with methyl-terminated tips it decreases. Similar trends are observed for pull-off forces, which increase and decrease as a function of the fraction of polar-terminated adsorbates for carboxylic acid- and methyl-terminated adsorbates, respectively. Analysis of histograms of adhesion forces has yielded insights into the phase structure of mixed SAMs. Single-component monolayers yield histograms that may be fitted to symmetric Gaussian distributions, irrespective of the nature of the terminal group on either the tip or the SAM. However, mixed monolayers yield broad, asymmetric distributions that could not be fitted with a Gaussian distribution. The best explanation for these data is that mixed SAMs of hydroxyl- and methyl-terminated alkanethiols of similar chain length form phase-separated structures.  相似文献   

19.
The cycloaddition reaction of an alkyne and azide to form a 1,2,3‐triazole is widely used in many areas. However, the stability of the triazole moiety under mechanical stress is unclear. To see if a triazole could be selectively split into an alkyne and azide in the presence of other typical covalent bonds, a mica surface functionalized with a molecule containing a triazole moiety in the middle and an activated ester at the end was prepared. An atomic force microscope (AFM) tip with amino groups on its surface was ramped over the mica surface at predefined locations, which could temporarily link the tip to the surface through amide bond formation. During retraction, the triazole or another bond in the linkage broke, and a force was recorded. The forces varied widely at different ramps from close to 0 pN to 860 pN due to nonspecific adhesions and to the inherent inconsistency of single bond rupture. If some of the forces were from triazole cycloreversion, there would be alkynes at the predefined ramping locations. The surface was reacted with an azide carboxylic acid followed by labeling with amino Au nanoparticles (AuNPs). AFM imaging revealed AuNPs at the predicted locations, which provided evidence that under certain conditions triazole could be split selectively in the presence of other bonds at forces below 860 pN.  相似文献   

20.
Besides significantly broadening the scope of available data on adhesion of proteins on solid substrates, we demonstrate for the first time that all seven proteins (tested here) behave similarly with respect to adhesion exhibiting a step increase in adhesion as wettability of the solid substrate decreases. Also, quantitative measures of like-protein-protein and like-self-assembled-monolayer (SAM)-SAM adhesive energies are provided. New correlations, not previously reported, suggest that the helix and random content (as measures of secondary structure) normalized by the molecular weight of a protein are significant for predicting protein adhesion and are likely related to protein stability at interfaces. Atomic force microscopy (AFM) was used to directly measure the normalized adhesion or pull-off forces between a set of seven globular proteins and a series of eight well-defined model surfaces (SAMs), between like-SAM-immobilized surfaces and between like-protein-immobilized surfaces in phosphate buffer solution (pH 7.4). Normalized force-distance curves between SAMs (alkanethiolates deposited on gold terminated with functional uncharged groups -CH3, -OPh, -CF3, -CN, -OCH3, -OH, -CONH2, and -EG3OH) covalently attached to an AFM cantilever tip modified with a sphere and covalently immobilized proteins (ribonuclease A, lysozyme, bovine serum albumin, immunoglobulin, gamma-globulins, pyruvate kinase, and fibrinogen) clearly illustrate the differences in adhesion between these surfaces and proteins. The adhesion of proteins with uncharged SAMs showed a general "step" dependence on the wettability of the surface as determined by the water contact angle under cyclooctane (thetaco). Thus, for SAMs with thetaco < approximately 66 degrees, (-OH, -CONH2, and -EG3OH), weak adhesion was observed (>-4 +/- 1 mN/m), while for approximately 66 < thetaco < approximately 104 degrees, (-CH3, -OPh, -CF3, -CN, -OCH3), strong adhesion was observed (< or =8 +/- 3 mN/m) that increases (more negative) with the molecular weight of the protein. Large proteins (170-340 kDa), in contrast to small proteins (14 kDa), exhibit characteristic stepwise decompression curves extending to large separation distances (hundreds of nanometers). With respect to like-SAM surfaces, there exists a very strong adhesive (attractive) interaction between the apolar SAM surfaces and weak interactive energy between the polar SAM surfaces. Because the polar surfaces can form hydrogen bonds with water molecules and the apolar surfaces cannot, these measurements provide a quantitative measure of the so-called mean hydrophobic interaction (approximately -206 +/- 8 mN/m) in phosphate-buffered saline at 296 +/- 1 K. Regarding protein-protein interactions, small globular proteins (lysozyme and ribonuclease A) have the least self-adhesion force, indicating robust conformation of the proteins on the surface. Intermediate to large proteins (BSA and pyruvate kinase-tetramer) show measurable adhesion and suggest unfolding (mechanical denaturation) during retraction of the protein-covered substrate from the protein-covered AFM tip. Fibrinogen shows the greatest adhesion of 20.4 +/- 2 mN/m. Unexpectedly, immunoglobulin G (IgG) and gamma-globulins exhibited very little adhesion for intermediate size proteins. However, using a new composite index, n (the product of the percent helix plus random content times relative molecular weight as a fraction of the largest protein in the set, Fib), to correlate the normalized adhesion force, IgG and gamma-globulins do not behave abnormally as a result of their relatively low helix and random (or high sheet) content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号