首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Negative electrospray ionization tandem quadrupole mass spectrometry was used to study the collision-induced dissociation (CID) of the O-glycosidic bond from different commercially available flavonoid glycosides. Depending on the structure, flavonoid glycosides can undergo both a collision-induced homolytic and heterolytic cleavage of the O-glycosidic bond producing deprotonated radical aglycone ((Y(0) - H)(-*)) and aglycone (Y(0) (-)) product ions. The relative abundance of the radical aglycone to the aglycone fragment from flavonol-3-O-glycosides increased with increasing number of hydroxyl substituents in the B ring and in the order kaempferol - 相似文献   

2.
Flavonol 3,7-di-O-glycosides were investigated by negative ion electrospray ionization tandem mass spectrometry using a quadrupole linear ion trap (LIT) mass spectrometer. The results indicate that the fragmentation behavior of flavonol 3,7-di-O-glycosides is substantially different from that of their isomeric mono-O-diglycosides. In order to characterize a flavonoid as a flavonol 3,7-di-O-glycoside, both [Y3(0) - H]-* and [Y(0) - 2H]- ions should be present in [M - H]- product ion spectrum. The MS(3) product ion spectra of Y3(0)-, [Y3(0) - H]-* and Y7(0)- ions generated from the [M - H]- ion provide sufficient structural information for the determination of glycosylation position. Furthermore, the glycosylation positions are determined by comparing the relative abundances of Y3(0)- and Y7(0)- ions and their specific fragmentation patterns with those of flavonol mono-O-glycosides. In addition, a [Y3(0) - H]-* ion formed by the homolytic cleavage of 3-O glycosidic bond with high abundance points to 3-O glycosylation, while a [Y(0) - 2H]- ion formed by the elimination of the two sugar residues is consistent with glycosylation at both the 3-O and 7-O positions. Investigation of negative ion ESI-MS(2) and MS(3) spectra of flavonol O-glycosides allows their rapid characterization as flavonol 3,7-di-O-glycoside and their differentiation from isomeric mono-O-diglycosides, and also enables their direct analysis in crude plant extracts.  相似文献   

3.
The influence of the glycosylation site on the fragmentation behavior of 18 flavonoid glycoside standards was studied using positive and negative electrospray ionization mass spectrometry in combination with collision-induced dissociation and tandem mass spectrometry. The glycosylation position is shown to affect the relative abundance of the radical aglycone ions that can be observed in the [M-H]- collision-induced dissociation spectra. In particular, the radical aglycone ions are very abundant for deprotonated flavonol 3-O-glycosides. Collisional activation of the radical aglycone ions produced from positional isomers revealed minor differences: m,nB0- product ions are pronounced for 7-O-glycosides, whereas m,nA0- product ions are relatively more abundant for 4'-O-glycosides. In addition, the ratio between the radical aglycone and the regular aglycone ions in the [M+Na]+ high-energy collision-induced dissociation spectra gives an indication about the glycosylation site. This ion ratio allows the differentiation between flavonoid 3-O- and 7-O-glycosides or can be useful in the comparison of unknown compounds with standards. Unambiguous differentiation between O-glycosylation at the common positions of flavonoid O-glycosides, i.e. the 3-, 4'- and 7-positions, is achieved by collisional activation of sodiated molecules at high collision energy. The presence of a B-ring product ion containing the sugar residue indicates 4'-O-glycosylation, whereas the loss of the B-ring part from the aglycone product ion is characteristic of 3-O-glycosylation and the loss of the B-ring part from both the [M+Na]+ precursor ion and the aglycone product ion points to 7-O-glycosylation.  相似文献   

4.
Four isomers of steroidal saponins were differentiated using multiple-stage tandem mass spectrometry combined with electrospray ionization (ESI-MS(n)). With the addition of lithium salt, the [M+Li](+) ions of saponins were observed in the ESI spectra. MS(n) spectra of these [M+Li](+) ions provided detailed structural information and allowed differentiation of the four isomeric saponins. The cross-ring cleavage ions from the saccharide chains of the saponins could be used as diagnostic ions for information concerning the linkage of the sugar moieties of the saponins. The masses of the X, A, Y and C type fragment ions formed from [M+Li](+) ions of the isomeric saponins provided information defining the methyl group locations.  相似文献   

5.
Atmospheric pressure photoionization (APPI) was assessed for the mass spectrometric analysis of polybromodiphenyl ethers (PBDEs) on the basis of a set of 17 standard compounds. Positive and negative ionization modes were both investigated. M(+.) ions were formed under positive ion conditions whereas the negative ion mode yielded [M-Br+O](-) ions. The behavior of these APPI-produced ions towards collisional activation was studied using an ion trap mass spectrometer. In positive ion mode, the loss of Br(2) was one of the major fragmentation pathways, and was favored for ortho-substituted PBDEs. Conversely, the loss of COBr(.) occurred only for non-ortho-substituted congeners. The collisional excitation of [M-Br+O](-) ions in the ion trap also led to the loss of Br(2), to the elimination of HBr, and to the formation of product ions by cleavage of the ether bond. The formation of para-quinone radical anions was observed for PBDEs ranging from penta- to hepta-congeners, whereas brominated aromatic carbanions were formed preferentially for the most brominated PBDEs studied in this work (hepta- or deca-BDEs). M(+.) ions did not undergo this fragmentation process.  相似文献   

6.
Negative-ion matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectra and tandem mass spectra of flavonoid mono-O-glycosides showed the irregular signals that were 1 and/or 2 Da smaller than the parent deprotonated molecules ([M – H]) and the sugar-unit lost fragment ions ([M – Sugar – H]). The 1 and/or 2 Da mass shifts are generated with the removing of a neutral hydrogen radical (H*), and/or with the homolytic cleavage of the glycosidic bond, such as [M – H* – H], [M – Sugar – H* – H], and [M – Sugar – 2H* – H]. It was revealed that the hydrogen radical removes from the phenolic hydroxy groups on the flavonoids, not from the sugar moiety, because the flavonoid backbones themselves absorb the laser. The glycosyl positions depend on the extent of the hydrogen radical removals and that of the homolytic cleavage of the glycosidic bonds. Flavonoid mono-glycoside isomers were distinguished according to their TOF MS and tandem mass spectra.
Figure
?  相似文献   

7.
C-Glycosyl quinochalcones are unique components in Carthamus tinctorius L. The reported C-glycosyl quinochalcones have the same quinochalcone skeleton with a hydroxyl group at the 5'-position and a glucose linked to this position with a carbon-carbon bond. In this study, the standard hydroxysafflor yellow A and water-extracted fraction of Carthamus tinctorius L. were analyzed by ultraperformance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOFMS) in both positive and negative ion modes. The fragmentation pathways of C-glycosyl quinochalcones were interpreted and validated by accurate mass measurement. Their fragmentation showed a special cleavage at the C-C bond except for the typical internal cleavage at the sugar moiety of other C-glycosyl flavonoids. In positive ion mode, cleavage of the 5'-glucose produced an [M+H-162](+) ion by a neutral loss, while cleavage of the 5'-glucose in negative ion mode led to an [M-H-163](-.) ion by radical cleavage. The cleavage from the carbonyl group produced fragment ions containing an A or a B ring. The fragment ions containing an A ring were common product ions of seven compounds in both ion modes, and fragment ions containing the B ring were used to judge the different substituent groups at the 3'-position. The fragmentation patterns of seven structurally related C-glycosyl quinochalcones were analyzed systematically and the formation of the fragment ions in two modes is explained in detail in this report. UPLC/Q-TOFMS is an effective tool for characterizing a complex sample, which gives higher resolution separation and generates accurate mass measurement of the product ions.  相似文献   

8.
Electrospray ionization mass spectrometry of ginsenosides   总被引:1,自引:0,他引:1  
Ginsenosides R(b1), R(b2), R(c), R(d), R(e), R(f), R(g1), R(g2) and F(11) were studied systematically by electrospray ionization mass spectrometry in positive- and negative-ion modes with a mobile-phase additive, ammonium acetate. In general, ion sensitivities for the ginsenosides were greater in the negative-ion mode, but more structural information on the ginsenosides was obtained in the positive-ion mode. [M + H](+), [M + NH(4)](+), [M + Na](+) and [M + K](+) ions were observed for all of the ginsenosides studied, with the exception of R(f) and F(11), for which [M + NH(4)](+) ions were not observed. The signal intensities of [M + H](+), [M + NH(4)](+), [M + Na](+) and [M + K](+) ions varied with the cone voltage. The highest signal intensities for [M + H](+) and [M + NH(4)](+) ions were obtained at low cone voltage (15-30 V), whereas those for [M + Na](+) and [M + K](+) ions were obtained at relatively high cone voltage (70-90 V). Collision-induced dissociation yielded characteristic positively charged fragment ions at m/z 407, 425 and 443 for (20S)-protopanaxadiol, m/z 405, 423 and 441 for (20S)-protopanaxatriol and m/z 421, 439, 457 and 475 for (24R)-pseudoginsenoside F(11). Ginsenoside types were identified by these characteristic ions and the charged saccharide groups. Glycosidic bond cleavage and elimination of H(2)O were the two major fragmentation pathways observed in the product ion mass spectra of [M + H](+) and [M + NH(4)](+). In the product ion mass spectra of [M - H](-), the major fragmentation route observed was glycosidic bond cleavage. Adduct ions [M + 2AcO + Na](-), [M + AcO](-), [M - CH(2)O + AcO](-), [M + 2AcO](2-), [M - H + AcO](2-) and [M - 2H](2-) were observed at low cone voltage (15-30 V) only.  相似文献   

9.
In this paper, we demonstrate for the first time the formation of radical anionic peptides [M - 2H]*- through a one-electron transfer mechanism upon low-energy collision-induced dissociation (CID) of gas-phase singly charged [Mn(III)(salen)(M - 2H)]*- complex ions [where salen is N,N'-ethylenebis(salicylideneiminato) and M is an angiotensin III derivative]. The types of fragment ions formed from [M - 2H]*- share some similarities with those from the cationic radical peptides M*+ and [M + H]*2+, but differ significantly from those of the corresponding deprotonated peptides [M - H]-. Fragmentation of [M - 2H]*- radical anionic angiotensin III derivatives leads preferentially to product ions of side-chain cleavage of amino acid residues, z-type and minor x-type fragment ions, most of which are types rarely observed in low-energy CID spectra of deprotonated analogs. The degree of competitive dissociation of the complexes is highly dependent on the nature of the substituted salen derivatives. The yields of anionic peptide radicals were enhanced to the greatest extent when electron withdrawing groups were positioned at the 5 and 5' positions, but the effect was rather modest when such groups resided at the 3 and 3' positions. Substituting a cyclohexyl unit of a salen with phenyl or naphthyl moieties at the 8 and 8' positions also facilitated electron-transfer pathways.  相似文献   

10.
A LC-diode array detection (DAD)-ESI-MS/MS method was established for the online characterization and identification of saikosaponins (SSs) from extracts of roots of Bupleurum scorzonerifolium Willd, B. marginatum var. stenophyllum and B. komarovianum. In ESI-MS/MS spectra of SSs, [M-H](- )ions were subjected to the cleavage of glycosidic bonds and produced Y type ions, which can be used to elucidate the structures of saccharide chains and aglycones. Fragmentation of aglycones provided mass information about their major substitutions. For three structural types of SSs, type III can be easily identified by their fragmentation behaviors; while type I and II often occur as isomers and they can be discriminated by their typical UV absorption data. The only sugar ring-cross cleavage corresponding to 76 Da took place at a furanose sugar moiety. As a result, more than 75 SSs, including eight novel compounds, were identified or tentatively characterized based on their UV and mass spectra and retention times. The approach established here allows a comprehensive analysis of the SSs in the genus of Bupleurum and will be helpful for quality control of the crude materials and their related preparations.  相似文献   

11.
Electron impact mass spectra of the trimethylsilyl derivatives of a series of flavonoid aglycones and chalcones are reported. The spectra show prominent ions arising from fragmentation of the trimethylsilyl (TMS) groups. Inter-actions between adjacent TMS groups, and between TMS groups in the 3- or 5-position (6′-position for the chalcones) and the C-ring carbonyl, yield structurally significant ions. Few fragments associated with the retro-Diels-Alder cleavage of the C-ring characteristic of the underivatized compounds, are observed. The TMS derivatives thus provide complementary information for the identification of flavonoid aglycones and chalcones in biological systems.  相似文献   

12.
13.
This paper reports the study of backbone cleavages in the collision-induced negative-ion mass spectra of the [M - H](-) anions of some synthetic modifications of the bioactive amphibian peptide citropin 1 (GLFDVIKKVASVIGGL-NH(2)). The peptides chosen for study contain no amino acid residues which could effect facile side-chain cleavage, i.e. Ser (-CH(2)O, side-chain cleavage) and Asp (-H(2)O) are replaced by Ala or Lys. We expected that such peptides should exhibit standard and pronounced peaks due to alpha cleavage ions (and to a lesser extent beta cleavage ions) in their collision-induced negative-ion spectra. This expectation was realised, but the spectra also contained peaks formed by a new series of cleavage anions. These are produced following cyclisation of the C-terminal CONH(-) moiety at carbonyl functions of amide groups along the peptide backbone; effectively transferring the NH of the C-terminal CONH(-) group to other amino acid residues. We have called the product anions of these processes beta' ions, in order to distinguish them from standard beta ions. Some beta' ions also fragment directly to some other beta' ions of smaller mass. The reaction coordinates of alpha,beta and beta' backbone processes have been calculated at the HF/6-31G*//AM1 level theory for simple model systems. The initial cyclisation step of the beta' sequence is barrierless and exothermic. Subsequent steps have a maximum barrier of +40 kcal mol(-1), with the overall reaction being endothermic by some 30 kcal mol(-1) at the level of theory used. These calculations take no account of the complexity of the conformationally flexible peptide system, and it is surprising that each of the two reacting centres can 'find' each other in such a large system.  相似文献   

14.
Introduction Substituted benzaldoxime 3-( 2, 2-dichlorovinyl )-2,2-dimethyl cyclopropanecarboxylates,considered as pyrethroid analogs, show a good bioactivity such as fungicidal, herbicidal and plantgrowth regulating activities[1,2]. EI-MS spectra of those compounds show the rearrangement of their structures, which has prompted us to elucidate their behavior under EI conditions. All the compounds studied have M-165 and M-99 fragment ions in the EI-MS spectra, but there is no segment with the mass of 165 and 99 lost directly from the molecular ions. So we postulated the process of rearrangement, it involved the cleavage of the C2C3 bond in the substituted cyclopropyl accompanied by the migration of disubstitued methylene-amino moiety to C2 or C3 position and elimination of a conjugated group with the mass of 165 or 99 to afford the even electron ion, of which the important step is the cleavage of the N-O bond. Although the cleavage of the alkoxy bond in the pyrethroids[3-5] has been reported, there has been no rearrangement reported. In order to test our postulations, MIKES and EI-HR-MS were carried out to elucidate the fragmentation pathways. The substituents in the phenyl ring played important roles in the stabilization of the product ions. The focal point of our work was to investigate two pathways of the skeletal rearrangement and the effect of the substituents.  相似文献   

15.
A mass spectrometric study was carried out on two nonylphenoxycarboxylic acids, NP1EC and NP2EC (where 1 and 2 indicate the number of ethoxylate units attached to the nonylphenoxy moiety), that are persistent metabolites of widely used nonionic surfactant nonylphenol ethoxylates. In a gas chromatographic/mass spectrometric (GC/MS) study of the methyl esters of NP1EC and NP2EC, two series of fragment ions were observed in electron ionization (EI) mass spectra; m/z (179 + 14n, n = 0-7) and m/z (105 + 14n, n = 0-4) for NP1ECMe and m/z (223 + 14n, n = 0-7) and m/z (107 + 14n, n = 0-5) for NP2ECMe. Similarity indices were used to compare quantitatively the mass spectra of isomers. The mass spectra of two isomers were found to be similar whereas those of the remaining isomers were readily distinguishable from each other. The abundant fragment ions of the two NPECMes were investigated further by GC/MS/MS; product ions resulting from cleavage in the alkyl moiety, cleavage in the ECMe moiety and cleavage in both moieties were detected. Possible structures of the nonyl groups in the two esters were inferred. GC/chemical ionization (CI) mass spectra of the NPECMes with isobutane as reagent gas showed characteristic hydride ion-abstracted fragment ions shifted by 1 Da from those in the corresponding EI mass spectra. The sensitivity of a selected ion monitoring quantitation method for the NPECMes is enhanced under CI conditions compared with that under EI conditions. With electrospray ionization MS/MS, [M - H](-) ions of NP1EC (m/z 277) and NP2EC (m/z 321) were observed and, upon collision-induced dissociation of [M - H](-) of each of the two acids, fragment ions of m/z 219 corresponding to deprotonated nonylphenol, were observed in each case. Based on this observation, a rapid, simple and reliable selected product ion quantitation method is proposed for NP1EC and NP2EC.  相似文献   

16.
The gas-phase reactions of a series of (di)manganese carbonyl positive ions with 1,4,7-trimethyl-1,4,7-triazacyclononane (Me(3)TACN) have been examined with the aid of Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. The monomanganese carbonyl ions, [Mn(CO)(n)](+) (n = 2-5), react predominantly by ligand exchange and to a minor extent by electron transfer with the formation of the radical cation of Me(3)TACN. For the [Mn(CO)(n)](+) (n = 2-4) ions, the ligand exchange results in the exclusive formation of a [Mn(Me(3)TACN)](+) complex, whereas small amounts of [Mn(CO)(Me(3)TACN)](+) ions are also generated in the reactions of the [Mn(CO)(5)](+) ion. The [Mn(2)(CO)(n)](+) ions (n = 2, 4 and 5) react also by competing electron transfer and ligand exchange. The reaction of the [Mn(2)(CO)(2)](+) and [Mn(2)(CO)(4)](+) ions is associated with cleavage of the Mn--Mn bond as evidenced by the pronounced formation of [Mn(Me(3)TACN)](+) ions. For [Mn(2)(CO)(5)](+), the ligand exchange leads mainly to the formation of [Mn(2)(CO)(n)(Me(3)TACN)](+) (n = 1-3) ions. These primary product ions react subsequently by the incorporation of a second Me(3)TACN molecule to afford [Mn(2)(CO)(Me(3)TACN)(2)](+) and [Mn(2)(CO)(2)(Me(3)TACN)(2)](+) ions. Both of these latter species incorporate an oxygen molecule with formation of ions with the assigned composition of [Mn(2)(O(2))(CO)(Me(3)TACN)(2)](+) and [Mn(2)(O(2))(CO)(2)(Me(3)TACN)(2)](+).  相似文献   

17.
Negative ion electrospray-tandem mass spectrometry has been employed to study chloride adducts of saccharide molecules. Decompositions of [M + Cl]- obtained under identical low-energy collision conditions allow the approximate ranking of chloride affinities and gas-phase acidities of a series of isomeric monosaccharides. The ketohexoses are found to be more acidic than the aldohexoses. Chloride adduct decompositions are examined for a glucopyranosyl fructose and a glucopyranosyl glucose series. For each disaccharide series, the linkage position is shown to markedly influence the favored pathways of [M + Cl]- decompositions, initiated either by loss of neutral HCl to form [M - H]- and possibly leading to further (consecutive) decompositions, or by loss of M to form Cl-. Upon formation of [M - H]-, both cross-ring cleavages and glycosidic bond decompositions were observed in varying degrees for the two series of disaccharides. Remarkably, for three non-reducing polysaccharides that each contain a terminal sucrose group at the "downstream" end, chlorine-containing product ions arising from cleavage of the Glcalpha-2Fru linkage have been observed. Apart from Cl-, chlorine-containing product ions are not observed for any of the other disaccharides investigated, and they appear to be specifically diagnostic of a terminal Glcalpha-2Fru linkage. Their appearance is rationalized based upon a substantially reduced tendency for HCl loss from these non-reducing polysaccharides.  相似文献   

18.
Propofol (2,6-diisopropyl phenol) is a widely used intravenous anesthetic. To define its pharmacokinetics and pharmacodynamics, methods for its quantitation in biological matrixes have been developed, but its pattern of mass spectral fragmentation is unknown. We found that fragmentation of the [M - H](-) ion (m/z 177) of propofol in both APCI MS/MS and ESI MS/MS involves the stepwise loss of a methyl radical and a hydrogen radical from one isopropyl side chain to give the most intense product ion, [M -H - CH(4)](-), at m/z 161. This two-step process is also the preferred mode of fragmentation for similar branched alkyl substituted phenols. This mode of fragmentation of the [M - H](-) ion is supported by three independent lines of evidence: (1) the presence of the intermediary [M - H - CH(3)](-) radical ion under conditions of reduced collision energy, (2) the determination of the mass of the predominant [M - H - CH(4)](-) product ion by high resolution mass spectrometry, and (3) the pattern of product ions resulting from further fragmentation of the [M - H - CH(4)](-) product ion. Phenols with a single straight chain alkyl substituent, in contrast, undergo beta elimination of the alkyl radical irrespective of the length of the alkyl chain, yielding the most intense product ion at m/z 106. This product ion represents a special case of a stable intermediary radical for the two-step process described for branched side chains, because further elimination of a hydrogen radical from the beta carbon is not possible.  相似文献   

19.
In-source collision-induced dissociation (CID) fragmentation features of multiclass flavonoid glycoconjugates were examined using liquid chromatography electrospray time-of-flight mass spectrometry. Systematic experiments were performed to search for optimal conditions for in-source fragmentation in both positive and negative ion modes. The objective of the study was to attain uniformly appropriate conditions for a wide range of analytes independently of the aglycone, the attached sugar part and the type of bond between the aglycone and the glycan moieties (O- or C-glycosides). Studied substances included representatives of flavonols, flavones, flavanones and anthocyanins and, regarding their glycan parts, mono-, di- and triglycosides with varying distribution of carbohydrate moieties (di-O-glycosides, O-diglycosides, O,C-diglycosides). The breakdown properties of the analytes along with the abundances of the characteristic diagnostic ions required for structural elucidation of complex flavonoid derivatives were evaluated. An optimized value was found for the instrument parameter (fragmentor voltage) affecting the in-source CID fragmentation of the analytes [230 V (ESI+) and 330 V (ESI-)]. Thus, appropriate performance in terms of both highly sensitive full-scan acquisition and fragmentation information was obtained for all the investigated flavonoids. In addition, singularities in the abundance of selected diagnostic ions (e.g. Y(0), Y(1) and Y*) due to variations in the interglycosidic linkage (rutinoside-neohesperidoside) in the glycan part were found and are also evaluated and discussed in detail. The combination of in-source CID fragmentation with high mass accuracy MS detection establishes a working basis for the development of versatile and useful LC-MS methods for wide-scope screening, non-targeted detection and tentative identification of flavonoid derivatives.  相似文献   

20.
The structural elucidation of by-products arising from carbofuran photodegradation using a high-pressure UV lamp has been investigated by liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) employing a quadrupole time-of-flight mass spectrometer. Exact mass measurements of the [M + H]+ ions of the by-products and of product ions allowed the elemental formulae and related structures of seven photodegradation by-products (resulting, respectively, from photo-Fries rearrangement, hydroxylation of the benzene ring, oxidation of the 2,3-dihydrobenzofuran ring, cleavage of the carbamate group, hydrolysis of the ether group and the newly observed radical coupling and decarboxylation processes) to be determined confidently. Accurate mass measurements of product ions allowed ambiguities to be removed concerning neutral losses having the same nominal mass, namely CO and C2H4, allowing the fragmentation patterns to be rationalized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号