首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用强短脉冲供电电源和一种新型的辉光放电灯联用进行阴极表面溅射,发现它与在直流供电下有不同的结果,扫描电镜进行观察,得到样品溅射表面的扫描图,结果表明,该技术的金属或合金样品表面的逐层分析提供了一种新方法。  相似文献   

2.
建立了利用辉光放电质谱法(GDMS)对高纯铝样品进行定量分析的方法。讨论了仪器工作参数、预溅射时间和质谱干扰的影响。采用高纯铝标样得出相对灵敏度因子(RSF)对实验结果进行校正,同时利用另一高纯铝标样HP1000验证实验的准确性,测定值与标准值的相对误差在-53.2%~16.6%之间,RSD在1.9%~11%之间,能够满足高纯铝中杂质的定量分析要求。  相似文献   

3.
采用辉光放电质谱法(GDMS)测定了纯锡中24种杂质元素,分析方法为无标定量分析。分析前纯锡样品须依次用乙醇、水及乙醇冲洗以除去表面的灰尘颗粒,凉干后用于分析。本工作对辉光放电过程中的三项关键因素,即辉光放电电压、放电电流及放电气流三者在辉光放电溅射/电离时的相互关系及其对总离子流强度的影响进行了试验和讨论,并确定了仪器在最佳状态时辉光放电的优化条件为:放电电压590V,放电电流30mA,放电气流450mL·min~(-1)。为排除各元素测定中质谱(MS)干扰的影响,选择了在不同的分辨模式(中/高)下用相对丰度较高、干扰较少的质量数进行分析。所测定元素测定结果的相对标准偏差(n=5)均小于15%。各元素的检出限(3s)为0.003~0.174μg·g~(-1)之间。本方法所得测定结果与电感耦合等离子体原子发射光谱法(ICP-AES)或电感耦合等离子体质谱法(ICP-MS)的测定结果基本一致。经试验,通过更换GDMS的阳极帽、导流管、采样锥和透镜等4种耗材,可完全消除锡的记忆效应。  相似文献   

4.
采用辉光放电质谱法直接测定钨钛合金中的杂质元素。对放电电流、气体流量和预溅射时间等条件进行优化,用仪器内置的标准相对灵敏度因子(RSFstd)进行半定量分析。同时用已定值的钨钛合金作为标样校正仪器,获得校正后的相对灵敏度因子(RSFWTi),再应用于定量分析。结果表明,未校正测量值与参考值比值在0.5~1.6之间,相对标准偏差(RSDs)小于5%,满足半定量分析要求。经RSFWTi校正的测量值与电感耦合等离子体质谱法(ICP-MS)测得的结果比较,相对偏差(RD)小于20%,该方法适用于合金中杂质元素定量分析。  相似文献   

5.
通过选择合适的同位素及分辨率,建立了辉光放电质谱法(GDMS)测定高纯Ti中57种痕量杂质元素的方法。辉光放电过程优化条件为Ar流量500 mL/min,放电电流2.2 mA,预溅射时间30 min。利用高纯Ti标准样品获得了与基体匹配的13种元素的相对灵敏度因子(RSF)值。用建立的方法对高纯Ti溅射靶材样品进行检测,主要杂质元素为Al, Si, S, Cl, V, Cr, Mn, Fe, Ni, Cu, Zr,含量在0.051~2.470μg/g之间,相对标准偏差(RSD)<23%,杂质总量<5μg/g。其中,Ca, Nb元素的检出限为0.5μg/g,其余元素的检出限低至10 ng/g级或1 ng/g级,而且Th, U元素的检出限达到0.1 ng/g。该方法能够满足5N级高纯金属Ti溅射靶材的检测要求。  相似文献   

6.
通过选择合适的同位素及分辨率,提出了辉光放电质谱法(GDMS)测定超高纯铜溅射靶材中39种痕量杂质元素的分析方法。对辉光放电过程中的参数进行了优化,条件如下:放电气体流量为450 mL·min^(-1),放电电流为2.00 mA,预溅射时间为20 min。由于高纯铜的GDMS标准样品极难获得,为提高痕量杂质元素的检测准确度,在现有的标准样品条件下,利用高纯铜标准样品只获得了与基体匹配的21种杂质元素的相对灵敏度因子(RSF),其余18种杂质元素的RSF只能按照仪器自带的标准RSF进行计算。参照美国材料与试验协会的标准ASTM F1593-08(2016)的TypeⅢ中的第2种方法计算33种杂质元素的检出限,而其他6种主要杂质元素因其含量高于仪器噪声水平而无法用此法得到检出限。用GDMS对超高纯铜溅射靶材样品进行了检测,主要杂质元素为硅、磷、硫、氯、铁、银,检出量为0.015~0.082μg·g^(-1),杂质总量小于1μg·g^(-1)。除锌、碲、金的检出限在10 ng·g^(-1)级外,其余元素的检出限能够达到ng·g^(-1)级,其中钍、铀的检出限甚至达到了0.1 ng·g^(-1)级,说明方法能够满足GB/T 26017-2010中的6N(99.9999%)超高纯铜溅射靶材的检测要求。  相似文献   

7.
辉光放电、阴极溅射/瞬变原子化原子吸收光谱中阴极材料的研究张必成(湖北大学化学系,武汉,430062)关键词辉光放电,阴极溅射,阴极材料辉光放电、阴极溅射/瞬变原子化原子吸收光谱(TACSGD/AAS)是近年来出现的高灵敏度痕量分析技术[1].它是通...  相似文献   

8.
辉光放电光谱法定量分析金属材料表面纳米级薄膜的研究   总被引:1,自引:0,他引:1  
介绍了利用辉光放电光谱法分析金属材料表面的纳米级薄膜。通过优化辉光光源的放电参数,计算标准样品的溅射率。溅射率经校正后,建立各元素的标准工作曲线,从而形成了纳米级薄膜的定量表面分析方法。试验证明,此方法对膜厚的测定具有很好的准确度和精密度,可应用于多种金属材料表面纳米级薄膜的研究。  相似文献   

9.
介绍了利用辉光放电光谱法分析掺杂纳米硅薄膜,通过优化辉光光源激发参数、计算标准样品的溅射率,建立了掺杂纳米硅薄膜的定量表面分析方法。方法应用于实际掺杂纳米硅薄膜样品的分析,并将分析深度、剖析结果与表面形貌仪的结果进行了对照。试验结果表明,分析方法快速、准确,具有实际应用价值。  相似文献   

10.
采用辉光放电质谱法(GDMS)分析超高纯铝样品(含铝量≥99.9995%)中B,Mg,Si,P,Cl,Ti等44种主要杂质元素,并且与电感耦合等离子体质谱法(ICPM S)进行对比,主要杂质元素含量检测结果一致。本工作对质谱干扰的排除和预溅射过程时间的确定进行了讨论,采用高纯铝标样对高纯铝中26种主要元素相对灵敏度因子(RSF)进行校正和验证,并考察了检测结果的准确性和精密度。结果表明,GDMS是超高纯铝样品直接测定的最有效手段之一。  相似文献   

11.
采用辉光放电质谱法(GDMS)分析超高纯铝样品(含铝量≥99.9995%)中B,Mg,Si,P,Cl,Ti等44种主要杂质元素,并且与电感耦合等离子体质谱法(ICPM S)进行对比,主要杂质元素含量检测结果一致。本工作对质谱干扰的排除和预溅射过程时间的确定进行了讨论,采用高纯铝标样对高纯铝中26种主要元素相对灵敏度因子(RSF)进行校正和验证,并考察了检测结果的准确性和精密度。结果表明,GDMS是超高纯铝样品直接测定的最有效手段之一。  相似文献   

12.
采用标准溶液加入法,往高纯氧化铋中加入混合标液,烘干并研磨均匀,制备了5个高纯氧化铋的控制样品。在挑取适量的粉末样品压在高纯铟薄片上,建立了辉光放电质谱法(GDMS)研究高纯氧化铋中的Mg、Al、Ca等19个元素相对灵敏度因子的方法。实验考察了放电参数和制样面积对基体信号强度和稳定性的影响,优化后的辉光放电电流为1.8 mA,放电电压为950 V,压在铟薄片上的高纯氧化铋直径约为6~8 mm。通过选择合适的同位素,在4000的中分辨率下测定即可消除质谱干扰。为了验证加标的准确性,采用电感耦合等离子体质谱仪(ICP-MS)对控制样品进行测定,所有元素的回收率都在80%以上。采用GDMS法测定5个控制样品并结合ICP-MS的测定值建立工作曲线,大部分元素的线性均达到0.995以上;除Al、Ga、Sb外,大部分元素的校准相对灵敏度因子(calRSF)和仪器自带的标准相对灵敏度因子(stdRSF)的比值都在1/2~2之间,说明GDMS的半定量分析不会有数量级的差别。但对于某些需要准确测定纯度的定量分析,则必须采用基体相匹配的RSF值进行校正。  相似文献   

13.
建立了直流辉光放电质谱(dc-GDMS)测定三氧化钼中痕量元素含量的方法,优化了辉光放电参数,考察了三氧化钼制样面积对放电稳定性和灵敏度的影响。在优化条件下,测定2个三氧化钼标准样品BS ZZ42001和BS ZZ42003的相对灵敏度因子RSF1和RSF2,计算得到平均相对灵敏度因子RSFA,对三氧化钼标准样品BS ZZ42002的测定结果进行校正,与BS ZZ42002的标准值比较,除Ti和Cd外,校正后得到的各元素测定值相对误差在±9.5%以内。对未知的三氧化钼样品测定结果进行校正,并与电感耦合等离子体原子发射光谱法(ICP-AES)和电感耦合等离子体质谱法(ICP-MS)结果对比。t检验结果表明,RSFA校正值与ICP-AES/ICP-MS法测定值无显著性差异。该方法可为三氧化钼中多种痕量元素的快速定量分析提供参考。  相似文献   

14.
采用标准溶液加入法往高纯氧化铋中加入混合标准溶液,烘干并研磨均匀,制备了5个高纯氧化铋的控制样品。再挑取适量的粉末样品压在高纯铟薄片上,建立了辉光放电质谱(GDMS)法校正高纯氧化铋中的Mg、Al、Ca等19种元素相对灵敏度因子的方法。实验考察了放电参数和制样面积对基体信号强度和稳定性的影响,优化后的辉光放电电流为1.8mA,放电电压为950V,压在铟薄片上的高纯氧化铋直径约为6~8mm。通过选择合适的同位素,在4000的中分辨率下测定即可消除质谱干扰。为了验证加标回收的准确性,采用电感耦合等离子体质谱(ICP-MS)法对控制样品进行测定,所有元素的加标回收率都在80%以上。采用GDMS法测定5个控制样品并结合ICP-MS法的测定值建立工作曲线,大部分元素的线性均达到0.995以上;除Al、Ga、Sb外,大部分元素的校准相对灵敏度因子(calRSF)和仪器自带的标准相对灵敏度因子(stdRSF)的比值都在1/2~2之间,说明GDMS的半定量分析不会有数量级的差别。但对于某些需要准确测定纯度的定量分析,则必须采用基体相匹配的RSF值进行校正。  相似文献   

15.
采用辉光放电质谱法(GD-MS)对高纯铌中Ta,Mo,W等痕量杂质元素进行了测试,并对GD-MS工作参数进行了优化,部分元素与采用电感耦合等离子体质谱法(ICP-MS)定量分析的结果进行比较,对某些元素含量差别较大的原因进行了分析,论述了Element GD辉光放电质谱仪的特点及其在痕量杂质分析上的优势。  相似文献   

16.
在原子吸收光度法中,Russell和Walsh很早就应用辉光放电中阴极溅射的原理做成原子化器。近年Gough等人采用Grimm灯的基本设计,并进行了一些改进做为原子化器对金属和合金进行直接原子吸收分析,取得了良好的结果。但是,从许多有关辉光放电灯的研究中看到,不同成份  相似文献   

17.
在仔细研辉光放电光源工作过程的基础上,在国内首先设计、制成了HGZ-Ⅱ型自动辉光放电光源。该光源除换样品外,实现了抽空、进气、对光、预燃、曝光、充气、复位等摄谱全过程的自动控制。有水压、真空度、短路保护措施和醒铃线路。设计合理,性能良好,操作简便,工作安全,可靠。程控部分的编排包括顺序控制。时序控制和条件控制。由于使用了通用执行元、器件,降低了成本,提高了耐用性。为满足表层,逐层分析的需要,还专门设计了计数电路。供电源实现了高压直流供电和脉冲供电。该光源可应用于合金中主成分和少量杂质分析及金属、合金表层,逐层成分分析。  相似文献   

18.
研究了辉光放电质谱仪(GDMS)的校准方法,评定了校准结果不确定度。用纯铜和合金钢标准样品在优化条件下对辉光放电质谱仪的灵敏度、稳定性、分辨率、检出限、示值误差和重复性等计量指标进行校准,验证仪器的可靠性。运用标准曲线方法定量分析合金钢标准样品中铜、钼、钨3钟元素,计算得铜、钼、钨3钟元素测量值的相对扩展不确定度分别为8%、6%、9%。根据不确定度来源和各不确定度分量结果,可知相对灵敏度因子(F)带来的不确定度显著高于其它不确定度,其对GDMS定量分析的准确性产生较大影响。  相似文献   

19.
高纯材料是现代高新技术发展的基础,在电子、光学和光电子等尖端科学领域发挥着重要作用。采用固体样品直接分析的辉光放电质谱法(GDMS),在高纯金属、高纯半导体材料的痕量和超痕量杂质分析中有着非常广泛的应用。综述了GDMS法对高纯金属、高纯半导体材料进行的元素分析,并对分析过程中工作参数、溅射时间、干扰峰等因素的影响进行了阐述。同时,也详述了应用GDMS法对高纯金属钛、镉,高纯半导体硅,分别进行的痕量杂质元素分析,结果显示放电稳定性良好,典型元素含量的相对标准偏差均在较为理想范围内。GDMS应用前景广泛,未来,GDMS将在除固体样品之外的其他样品类型的分析领域中发挥重要作用。  相似文献   

20.
辉光放电质谱(GDMS)作为高纯金属和半导体材料分析的强有力工具在国内已得到了大量应用,该文简要介绍了GDMS的基本原理和国内外应用现状,对仪器测量条件的选择、测量重复性进行了详细研究,对于含量在1 mg/kg左右的杂质,测量的重复性将产生约1%~5%的不确定度;对不同金属基体的系列标准物质进行对比研究,发现对于基体相同的样品,杂质元素在较宽的浓度范围内可以使用同样的校正系数进行校正,大部分元素的线性相关系数达到0.999以上,但对于不同基体的样品,测量中仍存在明显的基体效应,一些元素,尤其是轻质量数元素的相对灵敏度因子(RSF)设定值存在较大的偏差,并不适合定量分析,但绝大部分不超过2倍误差,可以满足半定量分析的要求。通过对GDMS定量分析中关键因素的研究,认为相对灵敏度因子的校正是GDMS测量结果可溯源性的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号