共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the capability of negative corona discharge ion mobility spectrometry (IMS) for quantitative magnitude of several explosives including 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN) and cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) has been evaluated for the first time. The total current obtained with the negative corona discharge was about 100 times larger than that of IMS based on 63Ni, which results in a lower detection limit and a wider linear dynamic range. The detection limits for PETN, TNT and RDX were 8×10−11, 7×10−11 and 3×10−10 g, respectively. The calibration plots for these explosives showed linear dynamic ranges of about four orders of magnitude. 相似文献
2.
Two new approaches to reduce false positive interferences commonly observed with explosives and drugs detection in the field were reported for ion mobility spectrometry (IMS). One of the approaches involved the rapid preseparation of potential interferences prior to detection by IMS. Firstly, it was found that the introduction of a short column packed with adsorption packing material before an IMS could help to reduce the false positive rates. Secondly, the retention time at which the most intense response occurred over the analysis time period could be utilized to separate false positive responses from target analytes with the same drift times. Rapid preseparation of potential interferences provided a greater degree of confidence for the detection (in less than 30 s) of drugs, explosives and chemical warfare agents (CWAs). Detection limits as low as 10 pg of TNT with a sensitivity of 12 A g−1 were reported. Successful development of this technique may lead to the construction of a simple interface fitted with a short column of adsorption packing material to enhance either initial separation or to hold-back interferences mixed with explosive and drug responses in the field. 相似文献
3.
Clinton A. Krueger Christopher K. Hilton Mark Osgood Jianglin Wu Ching Wu 《International Journal for Ion Mobility Spectrometry》2009,12(1):33-37
Current commercially available ion mobility spectrometers are intended for the analysis of chemicals in the gas phase. Sample
introduction methods, such as direct air sampling, a GC injector or a thermal desorber, are commonly an integral part of these
instruments. This paper describes an electrospray ionization ion mobility spectrometer system that allows direct introduction
samples in solution phase. This allows direct analysis of non-volatile organic and biological samples, and avoids decomposition
of thermally liable samples, providing reliable chemical identification. In addition, the new ion mobility spectrometer allows
mobility analysis with high resolving power. Commonly used commercial IMS systems provide resolving powers between 10 and
30; this new ion mobility spectrometer has resolving power greater than 60 for routine analysis. A high resolution instrument
is necessary for many applications where a complex mixture needs to be separated and quantified. This paper demonstrates the
advantages of using a high resolution ion mobility spectrometer and an electrospray ionization source for the analysis of
non-volatile pharmaceuticals as well as dissolved explosive in solution phase. 相似文献
4.
Identity confirmation of drugs and explosives in ion mobility spectrometry using a secondary drift gas 总被引:1,自引:0,他引:1
Abu B. Kanu 《Talanta》2007,73(4):692-699
This work demonstrated the potential of using a secondary drift gas of differing polarizability from the primary drift gas for confirmation of a positive response for drugs or explosives by ion mobility spectrometry (IMS). The gas phase mobilities of response ions for selected drugs and explosives were measured in four drift gases. The drift gases chosen for this study were air, nitrogen, carbon dioxide and nitrous oxide providing a range of polarizability and molecular weights. Four other drift gases (helium, neon, argon and sulfur hexafluoride) were also investigated but design limitations of the commercial instrument prevented their use for this application. When ion mobility was plotted against drift gas polarizability, the resulting slopes were often unique for individual ions, indicating that selectivity factors between any two analytes varied with the choice of drift gas. In some cases, drugs like THC and heroin, which are unresolved in air or nitrogen, were well resolved in carbon dioxide or nitrous oxide. 相似文献
5.
R.T. Vinopal J.R. JadamecP. deFur A.L. DemarsS. Jakubielski C. GreenC.P. Anderson J.E. DugasR.F. DeBono 《Analytica chimica acta》2002,457(1):83-95
Ion mobility spectrometry (IMS) is currently in widespread use for the detection and identification of narcotic and explosive compounds without prior sample clean-up or concentration steps. IMS analysis is rapid, less than a minute, and sensitive, with detection limits in the nanogram to picogram range, depending on the target analyte. Our studies indicate that this technique has potential for detection of specific components of bacterial cells and for identification and differentiation of bacterial strains and species within a minute, and with no specialized test kits or reagents required. When microgram quantities of whole bacterial cells are thermally desorbed, complex positive or negative ion patterns (plasmagrams) are obtained. These plasmagrams differ reproducibly for different strains and species and for different conditions of growth, and can be used for the classification and differentiation of specific strains and species of bacteria, including pathogens. Methods for improved ion peak detection, most notably sequential sample desorption at stepped increases in temperature (programmed temperature ramping), are described. 相似文献
6.
D. YoungK.M. Douglas G.A. Eiceman D.A. LakeM.V. Johnston 《Analytica chimica acta》2002,453(2):231-243
Polycyclic aromatic hydrocarbons (PAHs) were analyzed as adsorbates on borosilicate glass at levels from 40 pg (5.5 pg mm−2) to 7 μg (1 μg mm−2) using laser desorption-ionization (LDI) in air at ambient pressure and 100 °C with ion characterization by mobility spectrometry. Gas-phase positive ions with distinctive mobilities were produced from six PAHs using an unfocused beam at 266 nm, 6 mJ pulse−1 and 10 Hz from a Nd-YAG laser. The ions produced were identified as M+ using mass spectrometry (MS) with a LDI source at atmospheric pressure. The mobility spectrometry drift tube provided low memory effects and allowed observation of time-resolved intensity profiles for ion signals, and changes in this behavior with loading level suggested intermolecular interactions from multilayer formation. Mobility peaks were broader than those seen in gas-phase reactions, and this was attributed to Coulombic repulsion caused by the small volume near the surface where ionization would take place. An ion shutter in the drift tube could be synchronized with the laser pulse to offer additional specificity using tandem mobility separation; further, resolution was improved in mixtures of PAHs with similar mobilities. Negative ions were also detected, though these were mass-identified as ions formed from air through the capture of electrons released from the PAHs; no M−-ions were observed in air. Limits of detection ranged from sub-pg to low-ng for individual PAHs. 相似文献
7.
Detection of perfluorocarbons using ion mobility spectrometry 总被引:1,自引:0,他引:1
An ISAS custom-designed ion mobility spectrometer equipped with a ionization source is used for the sensitive detection of traces of perfluorocarbons (PFCs, C5F12 to C9F20) in air, a class of substances for which a growing interest for industrial and environmental applications arose within the last years. Mobility spectra of the PFCs are presented, compared and discussed with regard to the possibility of identifying these analytes; detection limits are determined to be in the upper ng l−1 range. Using a specific PFC as an example, a way to prevent unwanted contributions of non-product ions, the difference mobility spectrum, is introduced and described. Advantages and possibilities of this technique are briefly discussed. 相似文献
8.
Chemical standards in ion mobility spectrometry 总被引:1,自引:0,他引:1
Positive ion mobility spectra for three compounds (2,4-dimethylpyridine (2,4-DMP, commonly called 2,4-lutidine), dimethyl methylphosphonate (DMMP) and 2,6-di-t-butyl pyridine (2,6-DtBP)) have been studied in air at ambient pressure over the temperature range 37-250 °C with (H2O)nH+ as the reactant ion. All three compounds yield a protonated molecule but only 2,4-dimethylpyridine and dimethyl methylphosphonate produced proton-bound dimers. The reduced mobilities (K0) of protonated molecules for 2,4-dimethylpyridine and DMMP increase significantly with increasing temperature over the whole temperature range indicating changes in ion composition or interactions; however, K0 for the protonated molecule of 2,6-di-t-butyl pyridine was almost invariant with temperature. The K0 values for the proton-bound dimers of 2,4-dimethylpyridine and DMMP also showed little dependence on temperature, but could be obtained only over an experimentally smaller and lower temperature range and at elevated concentrations. Chemical standards will be helpful as mobility spectra from laboratories worldwide are compared with increased precision and 2,6-di-t-butyl pyridine may be a suitable compound for use in standardizing reduced mobilities. The effect of thermal expansion of the drift tube length on the calculation of reduced mobilities is emphasized. 相似文献
9.
Buryakov IA 《Talanta》2003,61(3):369-375
Ion mobility increment spectrometry (IMIS) is a high sensitive selective ionization technology for detection and identification of ultra-trace constituents, including toxic compounds, CW-agents, drugs and explosives in ambient air or liquid sample. Like an ion mobility spectrometry (IMS), this technology rests on sampling air containing a mixture of trace constituents, its ionization, spatial separation of produced ions and separated ions detection. Unlike IMS, ions of different types in IMIS are separated by ion mobility increment, α. Value α, is a function of the parameters: electric field strength and form, atmospheric pressure. To exclude the influence of these parameters on an α, the method of explosives identification by a standard compound was suggested. As a standard compound iodine was used. The relationship among the mobility coefficient increments equal to the relationship among the compensation voltage αi/αiodine=Ui/Uiodine is determined, where i are ions of 1,3-dinitrobenzene, 1,3,5-trinitrobenzene, p-mononitrotoluene, 2,4-dinitrotoluene and 2,4,6-trinitrotoluene This relationship is practically independent of the above mentioned parameters in the range 25<E/N<90 Td. The limits of the relative error of this relationship are determined both from spectra of individual compounds and nitrocompound-iodine mixtures. 相似文献
10.
Process analysis using ion mobility spectrometry 总被引:7,自引:0,他引:7
Baumbach JI 《Analytical and bioanalytical chemistry》2006,384(5):1059-1070
Ion mobility spectrometry, originally used to detect chemical warfare agents, explosives and illegal drugs, is now frequently
applied in the field of process analytics. The method combines both high sensitivity (detection limits down to the ng to pg
per liter and ppbv/pptv ranges) and relatively low technical expenditure with a high-speed data acquisition. In this paper, the working principles
of IMS are summarized with respect to the advantages and disadvantages of the technique. Different ionization techniques,
sample introduction methods and preseparation methods are considered. Proven applications of different types of ion mobility
spectrometer (IMS) used at ISAS will be discussed in detail: monitoring of gas insulated substations, contamination in water,
odoration of natural gas, human breath composition and metabolites of bacteria. The example applications discussed relate
to purity (gas insulated substations), ecology (contamination of water resources), plants and person safety (odoration of
natural gas), food quality control (molds and bacteria) and human health (breath analysis). 相似文献
11.
Ion mobility spectrometry (IMS) is routinely used in screening checkpoints for the detection of explosives and illicit drugs but it mainly relies on the capture of particles on a swab surface for the detection. Solid phase microextraction (SPME) has been coupled to IMS for the preconcentration of explosives and their volatile chemical markers and, although it has improved the LODs over a standalone IMS, it is limited to sampling in small vessels by the fiber geometry. Novel planar geometry SPME devices coated with PDMS and sol-gel PDMS that do not require an additional interface to IMS are now reported for the first time. The explosive, 2,4,6-trinitrotoluene (TNT), is sampled with the planar SPME reaching extraction equilibrium faster than with fiber SPME, concentrating detectable levels of TNT in a matter of minutes. The surface area, capacity, extraction efficiency, and LODs are also improved over fiber SPME allowing for sampling in larger volumes. The volatile chemical markers, 2,4-dinitrotoluene, cyclohexanone, and the taggant 4-nitrotoluene have also been successfully extracted by planar SPME and detected by IMS at mass loadings below 1 ng of extracted analyte on the planar device for TNT, for example. 相似文献
12.
Z. Hashemian 《Talanta》2010,81(3):1081-8607
A new method based on corona discharge ion mobility spectrometry (CD-IMS) was developed for the analysis of biogenic amines including spermidine, spermine, putrescine, and cadaverine. The ion mobility spectra of the compounds were obtained with and without n-Nonylamine used as the reagent gas. The high proton affinity of n-Nonylamine prevented ion formation from compounds with a proton affinity lower than that of n-Nonylamine and, therefore, enhanced its selectivity. It was also realized that the ion mobility spectrum of n-Nonylamine varied with its concentration. A sample injection port of a gas chromatograph was modified and used as the sample introduction system into the CD-IMS. The detection limits, dynamic ranges, and analytical parameters of the compounds with and without using the reagent gas were obtained. The detection limits and dynamic ranges of the compounds were about 2 ng and 2 orders of magnitude, respectively. The wide dynamic range of CD-IMS originates from the high current of the corona discharge. The results revealed the high capability of the CD-IMS for the analysis of biogenic amines. 相似文献
13.
Despite the recent, successful efforts to detect mycotoxins, new methods are still required to achieve higher sensitivity, more simplicity, higher speed, and higher accuracy at lower costs. This paper describes the determination of ochratoxin A (OTA) using corona discharge ion mobility spectrometry (IMS) in the licorice root. A quick screening and measuring method is proposed to be employed after cleaning up the extracted OTA by immunoaffinity columns. The ion mobility spectrometer is used in the inverse mode to better differentiate the OTA peak from the neighboring ones. After optimization of the experimental conditions such as corona voltage, injection port temperature, and IMS cell temperature, a limit of detection (LOD) of 0.010 ng is obtained. Furthermore, the calibration curve is found to be in the range of 0.01-1 ng with a correlation coefficient (R2) of 0.988. Licorice roots were analyzed for their OTA content to demonstrate the capability of the proposed method in the quantitative detection of OTA in real samples. 相似文献
14.
The ion mobilities of halogenated aromatics which are of interest in environmental chemistry and process monitoring were characterized with field-deployable ion mobility spectrometers and differential mobility spectrometers. The dependence of mobility of gas-phase ions formed by atmospheric-pressure photoionization (APPI) on the electric field was determined for a number of structural isomers. The structure of the product ions formed was identified by investigations using the coupling of ion mobility spectrometry with mass spectrometry (APPI-IMS-MS) and APPI-MS. In contrast to conventional time-of-flight ion mobility spectrometry (IMS) with constant linear voltage gradients in drift tubes, differential mobility spectrometry (DMS) employs the field dependence of ion mobility. Depending on the position of substituents, differences in field dependence were established for the isomeric compounds in contrast to conventional IMS in which comparable reduced mobility values were detected for the isomers investigated. These findings permit the differentiation between most of the investigated isomeric aromatics with a different constitution using DMS. 相似文献
15.
Tabrizchi M 《Talanta》2004,62(1):65-70
The separation efficiency of ion mobility spectrometry (IMS) may be measured in terms of either resolving power, based on a single-peak definition, or peak-to-peak resolution, based on the separation of pairs of adjacent peaks. Usually resolving power decreases with temperature. However, the experimental results show that the peak-to-peak resolution may be increased in some cases. Negative ion mobility spectra of halide ions are better resolved at elevated temperatures. In addition, the peaks corresponding to protonated monomer of amylacetate and the proton-bound dimer of ethylacetate are well separated at 100 °C while they fully overlap at 18 °C. This paper focuses on the effect of temperature on peak-to-peak resolution. It was also observed that in some cases peak-to-peak resolution decreases with temperature. Examples are the spectra of cyclohexanone and methyl-iso-butyl ketone (MIBK) as well as dimethyl methyl phosphonate (DMMP) and MIBK. The increase or decrease in resolution at elevated temperatures has been attributed to the changes in separation factor (α) which is governed by the different hydration and clustering tendency of ions. 相似文献
16.
Positive ion mobility spectra of different organophosphorus pesticides such as malathion (s-(1,2-dicarb-ethoxyethyl) o,o-dimethyl dithiophosphate), ethion (o,o,o′,o′-tetraethyl s,s′-methylene bis(phosphorodithioate)) and dichlorovos (2,2-dichlorovinyl dimethyl phosphate) have been studied in air at ambient pressure using ion mobility spectrometry method with 63Ni ionization source. The limits of quantification (LOQs) were 1.0 × 10−9, 1.0 × 10−9 and 5.0 × 10−9 g for malathion, ethion and dichlorovos, respectively. The working range of these compounds was about three orders of magnitude and the relative standard deviation (R.S.D.) of repeatability at the 5 μg ml−1 level were all below 15%. Furthermore, in this study, the influences of IMS cell temperature on the ion mobility spectra of these compounds were investigated. 相似文献
17.
Separation of benzodiazepines by electrospray ionization ion mobility spectrometry-mass spectrometry
Laura M. MatzHerbert H. Hill Jr. 《Analytica chimica acta》2002,457(2):235-245
Benzodiazepines are a commonly abused class of drugs; requiring analytical techniques that can separate and detect the drugs in a rapid time period. In this paper, the two-dimensional separation of five benzodiazepines was shown by electrospray ionization (ESI) ion mobility spectrometry (IMS)-mass spectrometry (MS). In this study, both the two dimensions of separation (m/z and mobility) and the high resolution of our IMS instrument enabled confident identification of each of the five benzodiazepines studied. This was a significant improvement over previous IMS studies that could not separate many of the analytes due to low instrumental resolution. The benzodiazepines that contain a hydroxyl group in their molecular structure (lorazepam and oxazepam) were found to form both the protonated molecular ion and dehydration product as predominant ions. Experiments to isolate the parametric reasons for the dehydration ion formation showed that it was not the result of corona discharge processes or the potential applied to the needle. However, the potential difference between the needle and first drift ring did influence both the relative intensity ratios of the two ions and the ion sensitivity. 相似文献
18.
Emissions from surfaces (from furniture, wall paintings or floor coverings for instance) significantly influence indoor air
quality and therefore the wellbeing or even the health of the occupants. Together with metabolites from mold they are responsible
for the well-known “sick building syndrome”. Therefore, it is in the interest of the manufacturer as well as of the occupants
to have a fast and accurate method for the detection of substances relevant to this syndrome in order to be able to monitor
and control product quality and indoor air quality. The use of small and easy-to-transport ion mobility spectrometers that
use UV light as the ionization source enables rapid in situ detection of such substances with high selectivity and sensitivity
(detection limits in the lower ppb range). If a multicapillary column is used for preseparation as well, the selectivity is
increased and the unwanted influence of humidity on the spectra can be eliminated, thus enabling the use of the instruments
under normal ambient conditions. Furthermore, the use of air as carrier gas avoids the need for other sources of high-purity
gas. An emission cell with a homogeneous and constant air flow over the surface to be investigated was developed in order
to ensure reproducible results. Investigations of emissions from wooden surfaces with and without additional contamination
as well as from complex mixtures are presented. The results demonstrate that relevant emissions can be identified and quantified
with high sensitivity and selectivity in under five minutes. Therefore, the method is useful for indoor air quality monitoring,
especially when miniaturized instruments are applied.
Figure 相似文献
19.
A rapid analytical procedure for the on-line determination of methyl tert-butyl ether (MTBE) in water samples was developed. A new membrane extraction unit was used to extract the MTBE from water samples. The concentration of MTBE was determined using ion mobility spectrometry with 63Ni ionization and corona discharge ionization without chromatographic separation. Both ionization methods permit the sensitive determination of MTBE. A detection limit of 100 microg/L was established for the on-line procedure. Neither the inorganic compounds, humic substances nor gasoline were found to exert a significant influence on the peak intensity of the MTBE. The screening procedure can be used for concentrations of monoaromatic compounds (benzene, toluene, xylene) up to 600 microg/L. No sample preparation is required and the analysis results are available within 5 min. In order to determine concentrations between 10 microg/L and 100 microg/L, a discontinuous procedure was developed on the basis of the same experimental set-up. 相似文献
20.
A new sample introduction system based on spray nebulization has been successfully developed to perform direct analysis of liquid samples by IMS. The system comprises a concentric nebulizer that generates a spray plume which is introduced in the ionization region of the IMS instrument through a temperature controlled transfer line. This system avoids previous problems of direct injection of liquid samples and maintains the countercurrent flow of inert gas necessary for the operation of the IMS instrument. Evaluation of the qualitative and quantitative capabilities of the methodology has been performed after a carefully study of the main variables affecting the spray nebulization and the transport of the analyte molecules through the transfer line. To demonstrate the usefulness of the new sample introduction system, direct analysis of drugs and drug metabolites in saliva or urine samples have been performed, obtaining accurate, reliable and sensitive results. Moreover, analytes with physico-chemical properties that limited the capability of thermal desorption as sample introduction method such as amino acids can be analyzed by using the spray nebulization methodology. 相似文献