首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A general strategy to calculate potential curves at multiconfigurational self-consistent field (MCSCF) level for inner-shell states is reported in this paper. Convergence is commonly very tough for inner-shell states, especially at this level of calculation, due to the problem of variational collapse of the inner-shell wave function to the ground or to a low-lying excited state. The present method allows to avoid this drawback by a sequence of constrained optimization in the orbital mixing step. The specific states studied are that resulting from transitions X (1)Σ(+) → (C 1s(-1) π(?)) (1,3)Π of CO. Accurate values are achieved for transition energies and vibrational splittings. A comparison is made with other approach, i.e., inner-shell CI based on a MCSCF wave function optimized for ground or low-lying excited states. This last approach is shown to fail in describing the whole potential curve.  相似文献   

2.
In this work we analyze how the choice of the active space in the CASSCF (the complete-active-space multiconfiguration self-consistent-field method) and CASPT2 (the second-order perturbation theory based on the CASSCF reference wave function) calculations affects the computed potential energy curves (PECs) for the intramolecular proton transfer reaction in the ground state and the two lowest lying singlet excited states of 1-amino-3-propenal. As anticipated, the results revealed that, qualitatively, the proton transfer in the different states can be correctly described even by minimal active spaces, which include the orbitals involved in the electronic excitation of the considered state and the antibonding sigma orbital corresponding to the bond formed by the molecule with the migrating hydrogen atom. However, quantitatively, the relative energies of the two tautomers and the energy barriers computed at the CASSCF level change when the active space is increased, indicating importance of the dynamic electron correlation. Introducing the dynamic correlation effects via CASPT2 makes the calculated energy parameters more uniform among the different active spaces. The analysis suggested certain optimal active spaces for studying proton transfer reactions in systems similar to 1-amino-3-propenal. The PEC calculations for excited states showed that the results are sensitive to the molecular geometries used in the calculations, particularly near the transition point. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1422–1431 (1999)  相似文献   

3.
侯春园  郑清川  舒鑫  张红星 《化学学报》2007,65(18):1947-1950
Cs对称性和aug-cc-pVTZ基组水平下, 采用全活化空间自洽场方法(CASSCF)研究了CH3O2自由基基态及其阴阳离子的12个低激发态. 为了进一步考虑动态电子相关效应, 采用二级多组态微扰理论(CASPT2)获得更加精确的能量值. 所有计算得到的电子态都是价电子态, 而且所得绝热激发能和电子亲和势与实验值非常接近.在CASPT2//CASSCF理论水平下计算了CH3O22A"和2A'电子态的CH3O2→CH3+O2的解离反应的势能曲线(PECs). 优化得到的裂解产物的几何结构和能量与分别优化CH3和O2得到的结果进行比较, 从而确定裂解产物的电子态. 结果表明, 从2A"和2A'电子态的解离反应分别对应产物CH3(2A")+O2(3A")和CH3(2A")+O2(1A").  相似文献   

4.
Complete active space self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) calculations with an ANO-RCC basis were performed for the 1(2)A', 1(2)A", 2(2)A', and 2(2)A" states of the CH3Br+ ion. The 1(2)A' state is predicted to be the ground state. The 2(2)A' state is predicted to be a bound state. The adiabatic and vertical excitation energies and the relative energies at the molecular geometry were calculated, and the energetic results for 2(2)A' and 2(2)A" are in reasonable agreement with the experimental data. Potential energy curves (PECs) for Br-loss and H-loss dissociations from the four C(s) states were calculated at the CASPT2//CASSCF level and the electronic states of the CH3(+) and CH2Br(+) ions as the dissociation products were determined by checking the relative energies and geometries of the asymptote products along the PECs. In the Br-loss dissociation, the 1(2)A', 1(2)A", and 2(2)A' states correlate with CH3(+) (X1A1') and the 2(2)A" state correlates with CH3(+) (1(3)A"). The energy increases monotonically with the R(C-Br) value along the four Br-loss PECs. In the H-loss dissociation the 1(2)A', 1(2)A", 2(2)A', and 2(2)A" states correlate with the X(1)A(1), 1(3)A", 1(3)A', and 1(1)A" states (1(3)A' lying above 1(1)A") of CH2Br(+), respectively. Along the 2(2)A" H-loss PEC there is an energy barrier and the CASSCF wave functions at large R(C-H) values have shake-up ionization character. Along the 2(2)A' H-loss PEC there are an energy barrier and a minimum. At the end of the present paper we present a comprehensive review on the electronic states and the X-loss and H-loss dissociations of the CH(3)X(+) (X = F, Cl, and Br) ions on the basis of our previous studies and the present study.  相似文献   

5.
Quantum chemical calculations of geometric and electronic structure and vertical transition energies for several low-lying excited states of the neutral and negatively charged nitrogen-vacancy point defect in diamond (NV(0) and NV(-)) have been performed employing various theoretical methods and basis sets and using finite model NC(n)H(m) clusters. Unpaired electrons in the ground doublet state of NV(0) and triplet state of NV(-) are found to be localized mainly on three carbon atoms around the vacancy and the electronic density on the nitrogen and rest of C atoms is only weakly disturbed. The lowest excited states involve different electronic distributions on molecular orbitals localized close to the vacancy and their wave functions exhibit a strong multireference character with significant contributions from diffuse functions. CASSCF calculations underestimate excitation energies for the anionic defect and overestimate those for the neutral system. The inclusion of dynamic electronic correlation at the CASPT2 level leads to a reasonable agreement (within 0.25 eV) of the calculated transition energy to the lowest excited state with experiment for both systems. Several excited states for NV(-) are found in the energy range of 2-3 eV, but only for the 1(3)E and 5(3)E states the excitation probabilities from the ground state are significant, with the first absorption band calculated at approximately 1.9 eV and the second lying 0.8-1 eV higher in energy than the first one. For NV(0), we predict the following order of electronic states: 1(2)E (0.0), 1(2)A(2) (approximately 2.4 eV), 2(2)E (2.7-2.8 eV), 1(2)A(1), 3(2)E (approximately 3.2 eV and higher).  相似文献   

6.
An ab initio approach is developed for calculation of low-lying excited states in Ln(3+) complexes with organic ligands. The energies of the ground and excited states are calculated using the XMCQDPT2/CASSCF approximation; the 4f electrons of the Ln(3+) ion are included in the core, and the effects of the core electrons are described by scalar quasirelativistic 4f-in-core pseudopotentials. The geometries of the complexes in the ground and triplet excited states are fully optimized at the CASSCF level, and the resulting excited states have been found to be localized on one of the ligands. The efficiency of ligand-to-lanthanide energy transfer is assessed based on the relative energies of the triplet excited states localized on the organic ligands with respect to the receiving and emitting levels of the Ln(3+) ion. It is shown that ligand relaxation in the excited state should be properly taken into account in order to adequately describe energy transfer in the complexes. It is demonstrated that the efficiency of antenna ligands for lanthanide complexes used as phosphorescent emitters in organic light-emitting devices can be reasonably predicted using the procedure suggested in this work. Hence, the best antenna ligands can be selected in silico based on theoretical calculations of ligand-localized excited energy levels.  相似文献   

7.
Electronic states of the C6H5F+ ion have been studied within C2v symmetry by using the complete active space self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) methods in conjunction with an atomic natural orbital basis. Vertical excitation energies (Tv) and relative energies (Tv') at the ground-state geometry of the C6H5F molecule were calculated for 12 states. For the five lowest-lying states, 1(2)B1, 1(2)A2, 2(2)B1, 1(2)B2, and 1(2)A1, geometries and vibrational frequencies were calculated at the CASSCF level, and adiabatic excitation energies (T0) and potential energy curves (PEC) for F-loss dissociations were calculated at the CASPT2//CASSCF level. On the basis of the CASPT2 T0 calculations, we assign the X, A, B, C, and D states of the ion to 1(2)B1, 1(2)A2, 2(2)B1, 1(2)B2, and 1(2)A1, respectively, which supports the suggested assignment of the B state to (2)(2)B1 by Anand et al. based on their experiments. Our CASPT2 Tv and Tv' calculations and our MRCI T0, Tv, and Tv' calculations all indicate that the 2(2)B1 state of C6H5F+ lies below 1(2)B2. By checking the relative energies of the asymptote products and checking the fragmental geometries and the charge and spin density populations in the asymptote products along the CASPT2//CASSCF PECs, we conclude that the 1(2)B1, 1(2)B2, and 1(2)A1 states of C6H5F+ correlate with C6H5+ (1(1)A1) + F (2P) (the first dissociation limit). The energy increases monotonically along the 1(2)B1 PEC, and there are barriers and minima along the 1(2)B2 and 1(2)A1 PECs. The predicted appearance potential value for C6H5+ (1(1)A1) is very close to the average of the experimental values. Our CASPT2//CASSCF PEC calculations have led to the conclusion that the 1(2)A2 state of C6H5F+ correlates with the third dissociation limit of C6H5+ (1(1)A2) + F (2P), and a preliminary discussion is presented.  相似文献   

8.
The ground state (S0) geometry of the firefly luciferin (LH2) was optimized by both DFT B3LYP and CASSCF methods. The vertical excitation energies (Tv) of three low-lying states (S1, S2, and S3) were calculated by TD-DFT B3LYP//CASSCF method. The S1 geometry was optimized by CASSCF method. Its Tv and the transition energy (Te) were calculated by MS-CASPT2//CASSCF method. Both the TD-DFT and MS-CASPT2 calculated S1 state Tv values agree with the experimental one. The IPEA shift greatly affects the MS-CASPT2 calculated Tv values. Some important excited states of LH2 and oxyluciferin (oxyLH2) are charge-transfer states and have more than one dominant configuration, so for deeply researching the firefly bioluminescence, the multireference calculations are desired.  相似文献   

9.
We devise and apply a simple computational scheme for obtaining localized bonding schemes and their weights from a CASSCF wave function. These bonding schemes are close to resonance structures drawn by chemists. Firstly, a CASSCF wave function is computed. Secondly, the CASSCF computation is repeated but now the delocalized complete active space MOs are substituted by Weinhold's localized natural atomic orbitals. In this way the original CASSCF wave function is represented by a sequence of Slater determinants composed of localized natural atomic orbitals. Thus, a standard CASSCF wave function can be reinterpreted in terms of a local picture. To test the method we obtain localized bonding schemes and their weights for the ground and the pi-pi* excited state of ethylene. Moreover, bonding schemes and their weights are derived for the ground, the 1(1)B(u), and the 2(1)Ag pi-pi* excited states of trans-butadiene. The large weight bonding schemes are shown to be a qualitative indicator for the known photochemistry of butadiene. The remarkable stability of the Arduengo carbene is discussed by obtaining bonding schemes that indicate a stabilizing delocalization of the pi electrons. We illustrate that the large weight bonding schemes are in line with the observed reactivity of the Arduengo carbene.  相似文献   

10.
We studied the 1(2)A' '(X2A' '), 1(2)A' (A2A'), 2(2)A' ' (B2A' '), and 2(2)A' (C2A') states of the C2H3Cl+ ion using the complete active space self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) methods. For the four ionic states, we calculated the equilibrium geometries, adiabatic (T0) and vertical (Tv) excitation energies, and relative energies (Tv') at the geometry of the molecule at the CASPT2 level and the Cl-loss dissociation potential energy curves (PECs) at the CASPT2//CASSCF level. The computed oscillator strength f value for the X2A' ' <-- A2A' transition is very small, which is in line with the experimental fact that the A state has a long lifetime. The CASPT2 geometry and T0 value for the A2A' state are in good agreement with experiment. The CASPT2 Tv' values for the A2A', B2A' ', and C2A' states are in good agreement with experiment. The Cl-loss PEC calculations predict that the X2A' ', A2A', and C2A' states correlate to C2H3+ (XA1) and the BA' ' state to C2H3+ (1A' ') (the B2A' ' and C2A' PECs cross at R(C-Cl) approximately 2.24 A). Our calculations indicate that at 357 nm the X2A' ' state can undergo a transition to B2A' ' followed by a predissociation of B2A' ' by the repulsive C2A' state (via the B/C crossing), leading to C2H3+ (X1A1), and therefore confirm the experimentally proposed pathway for the photodissociation of X2A' ' at 357 nm. Our CASPT2 D0 calculations support the experimental fact that the X state does not undergo dissociation in the visible spectral region and imply that a direct dissociation of the A state to C2H3+ (X1A1) is energetically feasible.  相似文献   

11.
Spectroscopic properties of the low-lying electronic states of Ga2As2 and its ions are studied using the complete active-space self-consistent field (CASSCF) and density function theory (DFT) followed by the coupled-cluster single and double substitutions (including triple excitations) (CCSD(T)) calculations. The stability of low-lying electronic states is examined by computing vibrational frequency. The energies of the ground states and a number of excited electronic states have been computed to predict the spectra of Ga2As2 and its ions. The ionization energy, electronic affinity, and atomization energy are estimated at the CCSD(T)/6-311+G(d) level and compared with the available experimental results.  相似文献   

12.
The electronic structure of NiCH(2) (+), representative of transition metal carbene ions, is investigated by means of several methods of quantum chemistry. The relative stabilities of the four low-lying doublet electronic states ((2)A(1), (2)A(2), (2)B(1), and (2)B(2)) are determined at the coupled cluster singles and doubles level (CCSD) and triples level [CCSD(T) and CCSDT-3] with both a Hartree-Fock and density functional theory (Kohn-Sham) reference. The equation-of-motion coupled cluster for treatment of excited states in singles and doubles approximation (EOM-CCSD) is used to characterize the transition energies from the (2)A(1) electronic ground state to the low-lying doublet excited states. The (2)A(2) and (2)B(1) states are nearly degenerate, found to be separated by 940 cm(-1) at the EOM-CCSD level, in agreement with the CASSCF energy ordering. The (2)B(2) state is calculated to be higher in energy by more than 1.0 eV. The spin purity of the low-lying doublet and quadruplet states described by CCSD calculations based on the unrestricted open-shell Hartree-Fock reference is discussed.  相似文献   

13.
14.
采用CASPT2/CASSCF方法对HO2自由基进行统计算, 优化了三个电子态的稳定点几何构型, 得到详细的频率数据. 利用垂直激发计算确定了3个里德堡态、11个价电子态的电子结构以及在三种理论水平上(CASSCF, SS-CASPT2和MS-CASPT2)的能量信息. 计算中使用了ANO-L和ANO-L+基组, 验证了已知实验数据的同时, 通过与其它理论计算结果的对比, 揭示了应用弥散轨道系数对于该体系激发态研究的重要性.  相似文献   

15.
采用CASSCF方法和6-311++(3df, 3pd)基组以及Cs对称性优化了乙基硫自由基和阳、阴离子3种分子的12个电子态的几何构型. 利用二级微扰方法(CASPT2)对这12个电子态做了单点能校正. 通过比较自由基与阴阳离子的能量, 得出了绝热电子亲和势和绝热电子电离能, 与实验结果在允许误差范围内基本一致.  相似文献   

16.
The geometry structure, dissociation energy, vibrational frequencies, and low-lying spin-state energy spectrum of Mn2+ are investigated by using ab initio CASSCF/ECP10MDF, complete active space self-consistent field/atomic natural orbital basis sets (CASSCF/ANO-s), CASPT2/ECP10MDF, and second-order perturbation theory with CASSCF reference function/atomic natural orbital basis sets (CASPT2/ANO-s) levels of theory. For the ground state the dissociation energy of 1.397 eV calculated at the CASPT2/ANO-s level supports Jarrlod's experimental value of 1.39 eV. The equilibrium bond length and vibrational frequency are 2.940 A calculated at the CASPT2/ANO-s level of theory and 214.4 cm-1 calculated at the CASSCF/ANO-s level of theory, respectively. On the basis of the mixed-valence model, the Heisenberg exchange constant J(-71.2 cm-1) and the double-exchange constant B(647.7 cm-1) are extracted explicitly from the low-lying energy spectrum calculated at the higher levels of theory. The magnetic competition between the weaker Heisenberg exchange interactions and the stronger double-exchange interactions makes the ground state a 12Sigmag+ state, consistent with electron paramagnetic resonance experimental observation, which explains unusual magnetic properties of Mn2+, quite different from the antiferromagnetic ground state of Mn2 and Cr2. On the other hand, the results calculated at the higher levels of theory show the consistent antiferromagnetic Heisenberg exchange interactions between 3d-3d for Cr2, Mn2+, and Mn2.  相似文献   

17.
Electronic structure calculations at the CASSCF and UB3LYP levels of theory with the aug-cc-pVDZ basis set were used to characterize structures, vibrational frequencies, and energies for stationary points on the ground state triplet and singlet O(2)+C(2)H(4) potential energy surfaces (PESs). Spin-orbit couplings between the PESs were calculated using state averaged CASSCF wave functions. More accurate energies were obtained for the CASSCF structures with the MRMP2/aug-cc-pVDZ method. An important and necessary aspect of the calculations was the need to use different CASSCF active spaces for the different reaction paths on the investigated PESs. The CASSCF calculations focused on O(2)+C(2)H(4) addition to form the C(2)H(4)O(2) biradical on the triplet and singlet surfaces, and isomerization reaction paths ensuing from this biradical. The triplet and singlet C(2)H(4)O(2) biradicals are very similar in structure, primarily differing in their C-C-O-O dihedral angles. The MRMP2 values for the O(2)+C(2)H(4)→C(2)H(4)O(2) barrier to form the biradical are 33.8 and 6.1 kcal/mol, respectively, for the triplet and singlet surfaces. On the singlet surface, C(2)H(4)O(2) isomerizes to dioxetane and ethane-peroxide with MRMP2 barriers of 7.8 and 21.3 kcal/mol. A more exhaustive search of reaction paths was made for the singlet surface using the UB3LYP/aug-cc-pVDZ theory. The triplet and singlet surfaces cross between the structures for the O(2)+C(2)H(4) addition transition states and the biradical intermediates. Trapping in the triplet biradical intermediate, following (3)O(2)+C(2)H(4) addition, is expected to enhance triplet→singlet intersystem crossing.  相似文献   

18.
The S0 (X1A′), T1 (a3A″), S1 (A1A″), T2 (b3A′), and S2 (B1A′) states of the (trans-)HONO molecule were studied by using the CASSCF and CASPT2 methods. The CASPT2(//CASPT2) adiabatic and vertical excitation energy values are in good agreement with available experimental data. The CASPT2//CASSCF potential energy curves (PECs) calculations indicate that: (i) all the five states correlate with the products of OH (X2Π) + NO (X2Π); (ii) along each of the T1, S1, and T2 PECs there is a minimum followed by a transition state (barrier); and (iii) the repulsive S2 PEC crosses the T2, S1, and T1 PECs. The geometries and relative energies for the stationary points along these PECs were calculated at the CASPT2(//CASPT2) level, and the calculations predict that the barrier height value for S1 is negligibly small (0.0018 eV).  相似文献   

19.
20.
In this work, theoretical computations for the ground and excited states of BrOOBr have been performed at high-level ab initio molecular orbital theories. The ground-state geometries of BrOOBr in different forms (trans, cis, and twist form) have been optimized at the couple-cluster CCSD(T) level of theory with cc-pVTZ and aug-cc-pVTZ basis sets, which indicates that at CCSD(T)/cc-pVTZ level of theory, the twist form is 4.96 kcal/mol more stable than the trans form and 10.67 kcal/mol more stable than the cis form; at the CCSD(T)/aug-cc-pVTZ basis set the twist form is 4.33 kcal/mol more stable than the trans form and 9.54 kcal/mol more stable than the cis form. The vertical excitation energies and potential-energy curves for the singlet and triplet low-lying excited states of BrOOBr were calculated at both the complete active space self-consistent-field (CASSCF) level of theory and the multireference internally contracted configuration interaction (MRCI) level of theory. The differences of potential-energy curves at CASSCF and MRCI levels of theory are found for the BrOOBr excited states. At CASSCF level of theory, none of the BrOOBr excited states are bound. However, at MRCI level of theory, all the BrOOBr states studied in this work are bound or slightly bound at the Frank-Condon region. In addition, the scalar relativistic effect and the spin-orbital coupling effect on the vertical excitation energies of the electronic states of BrOOBr were estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号