首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structures of the ground state pyrrole-(H2O)n clusters are investigated using ab initio calculations. The charge-transfer driven femtosecond scale dynamics are studied with excited state ab initio molecular dynamics simulations employing the complete-active-space self-consistent-field method for pyrrole-(H2O)n clusters. Upon the excitation of these clusters, the charge density is located over the farthest water molecule which is repelled by the depleted pi-electron cloud of pyrrole ring, resulting in a highly polarized complex. For pyrrole-(H2O), the charge transfer is maximized (up to 0.34 a.u.) around approximately 100 fs and then oscillates. For pyrrole-(H2O)2, the initial charge transfer occurs through the space between the pyrrole and the pi H-bonded water molecule and then the charge transfer takes place from this water molecule to the sigma H-bonded water molecule. The total charge transfer from the pyrrole to the water molecules is maximized (up to 0.53 a.u.) around approximately 100 fs.  相似文献   

2.
Ionization dynamics of a water dimer have been investigated by means of a direct ab initio molecular dynamics (MD) method. Two electronic state potential energy surfaces of (H(2)O)(2)(+) (ground and first excited states, (2)A' and (2)A') were examined as cationic states of (H(2)O)(2)(+). Three intermediate complexes were found as product channels. One is a proton transfer channel where a proton of H(2)O(+) is transferred into the H(2)O and then a complex composed of H(3)O(+)(OH) was formed. The second is a face-to-face complex channel denoted by (H(2)O-OH(2))(+) where the oxygen-oxygen atoms directly bind each other. Both water molecules are equivalent to each other. The third one is a dynamical complex where H(2)O(+) and H(2)O interact weakly and vibrate largely with a large intermolecular amplitude motion. The dynamics calculations showed that in the ionization to the (2)A' state, a proton transfer complex H(3)O(+)(OH) is only formed as a long-lived complex. On the other hand, in the ionization to the (2)A' state, two complexes, the face-to-face and dynamical complexes, were found as product channels. The proton of H(2)O(+) was transferred to H(2)O within 25-50 fs at the (2)A' state, meaning that the proton transfer on the ground state is a very fast process. On the other hand, the decay process on the first excited state is a slow process due to the molecular rotation. The mechanism of the ionization dynamics of (H(2)O)(2) was discussed on the basis of theoretical results.  相似文献   

3.
Water decomposition process was investigated by ab initio molecular dynamic simulations using a model of (H(2)O)(2)(+) clusters. The proton transfer (PT) process from the cationic H-donor water to the H-acceptor water for the formation of (HO˙)·H(3)O(+) was predicted as about 90 fs on average calculated at CCSD level of theory. The valence-electron transfer (VET) process through the formation of hemibond interaction between neutral and cationic water, (H(2)O)(2)(+), was also identified in several collected trajectories. Both PT and VET processes were found to propagate along two orthogonal reaction coordinates, the former was through an intermolecular hydrogen bond and the latter required oxygen-oxygen hemibonding. Significant difference of the theoretical electronic transitions along the VET trajectories was also observed in comparison with the non-VET cases, being calculated at SAC-CI level. The strong absorption features of hemibonding (H(2)O)(2)(+) may introduce an interesting consideration for experimental design to monitor the water decomposition process.  相似文献   

4.
We present a new approach that combines electronic structure methods and molecular dynamics simulations to investigate the infrared spectroscopy of condensed phase systems. This approach is applied to the OH stretch band of dilute HOD in liquid D2O and the OD stretch band of dilute HOD in liquid H2O for two commonly employed models of water, TIP4P and SPC/E. Ab initio OH and OD anharmonic transition frequencies are calculated for 100 HOD x (D2O)n and HOD x(H2O)n (n = 4-9) clusters randomly selected from liquid water simulations. A linear empirical relationship between the ab initio frequencies and the component of the electric field from the solvent along the bond of interest is developed. This relationship is used in a molecular dynamics simulation to compute frequency fluctuation time-correlation functions and infrared absorption line shapes. The normalized frequency fluctuation time-correlation functions are in good agreement with the results of previous theoretical approaches. Their long-time decay times are 0.5 ps for the TIP4P model and 0.9 ps for the SPC/E model, both of which appear to be somewhat too fast compared to recent experiments. The calculated line shapes are in good agreement with experiment, and improve upon the results of previous theoretical approaches. The methods presented are simple, and transferable to more complicated systems.  相似文献   

5.
The impact of microhydration on the electronic structure and reactivity of the H(3)O moiety is investigated by ab initio calculations. In the gas phase, H(3)O is a radical with spin density localized on its hydrogen end, which is only kinetically stable and readily decomposes into a water molecule and a hydrogen atom. When solvated by a single water molecule, H(3)O preserves to a large extent its radical character, however, two water molecules are already capable to shift most of the spin density to the solvent. With three solvating water molecules this shift is practically completed and the system is best described as a solvent-separated pair of a hydronium cation and a hydrated electron. The electronic structure of this system and its proton transfer reactivity leading to formation of a hydrogen atom already resemble those of a proton-electron pair in bulk water.  相似文献   

6.
Photodissociation dynamics of benzyl alcohol, C(6)H(5)CH(2)OH and C(6)H(5)CD(2)OH, in a molecular beam was investigated at 193 nm using multimass ion imaging techniques. Four dissociation channels were observed, including OH elimination and H(2)O elimination from the ground electronic state, H atom elimination (from OH functional group), and CH(2)OH elimination from the triplet state. The dissociation rate on the ground state was found to be 7.7 × 10(6) s(-1). Comparison to the potential energy surfaces from ab initio calculations, dissociation rate, and branching ratio from Rice-Ramsperger-Kassel-Marcus calculations were made.  相似文献   

7.
The OH radical is one of the most important oxidants in the atmosphere due to its high reactivity. The study of hydrogen-bonded complexes of OH with the water molecules is a topic of significant current interest. In this work, we present the development of a new analytical functional form for the interaction potential between the rigid OH radical and H(2)O molecules. To do this we fit a selected functional form to a set of high level ab initio data. Since there is a low-lying excited state for the H(2)O.OH complex, the impact of the excited state on the chemical behavior of the OH radical can be very important. We perform a potential energy surface scan using the CCSD(T)/aug-cc-pVTZ level of electronic structure theory for both excited and ground states. To model the physics of the unpaired electron in the OH radical, we develop a tensor polarizability generalization of the Thole-type all-atom polarizable rigid potential for the OH radical, which effectively describes the interaction of OH with H(2)O for both ground and excited states. The stationary points of (H(2)O)(n)OH clusters were identified as a benchmark of the potential.  相似文献   

8.
The production of OH and HO(2) in Cl-initiated oxidation of cyclohexane has been measured using pulsed-laser photolytic initiation and continuous-laser absorption detection. The experimental data are modeled by master equation calculations that employ new G2(MP2)-like ab initio characterizations of important stationary points on the cyclo-C(6)H(11)O(2) surface. These ab initio calculations are a substantial expansion on previously published characterizations, including explicit consideration of conformational changes (chair-boat, axial-equatorial) and torsional potentials. The rate constants for the decomposition and ring-opening of cyclohexyl radical are also computed with ab initio based transition state theory calculations. Comparison of kinetic simulations based on the master equation results with the present experimental data and with literature determinations of branching fractions suggests adjustment of several transition state energies below their ab initio values. Simulations with the adjusted values agree well with the body of experimental data. The results once again emphasize the importance of both direct and indirect components of the kinetics for the production of both HO(2) and OH in radical + O(2) reactions.  相似文献   

9.
On the basis of density functional theory (DFT) and high level ab initio theory, we report the structures, binding energies, thermodynamic quantities, IR spectra, and electronic properties of the hydride anion hydrated by up to six water molecules. Ground state DFT molecular dynamics simulations (based on the Born-Oppenheimer potential surface) show that as the temperature increases, the surface-bound hydride anion changes to the internally bound structure. Car-Parrinello molecular dynamics simulations are also carried out for the spectral analysis of the monohydrated hydride. Excited-state ab initio molecular dynamics simulations show that the photoinduced charge-transfer-to-solvent phenomena are accompanied by the formation of the excess electron-water clusters and the detachment of the H radical from the clusters. The dynamics of the detachment process of a hydrogen radical upon the excitation is discussed.  相似文献   

10.
Functionalization of semiconductor nanocrystals can be achieved by anchoring organic ligands to the surface dangling bonds. The resulting surface complexes often introduce electronic states in the semiconductor band gap. These interband states sensitize the host material for photoabsorption at frequencies characteristic of the molecular adsorbates, leading to the well-known process of photoexcitation and subsequent femtosecond interfacial electron transfer. This paper investigates the relaxation dynamics of hole states, energetically localized deep in the semiconductor band gap, after the ultrafast electron-hole pair separation due to interfacial electron transfer. Mixed quantum-classical methods, based on mean-field nuclear dynamics approximated by ab initio density functional theory molecular dynamics simulations, reveal superexchange hole tunneling between adjacent adsorbate molecules in a model study of functionalized TiO2-anatase nanostructures. It is shown that electronic coherences can persist for hundreds of picoseconds under cryogenic and vacuum conditions, despite the partial intrinsic decoherence induced by thermal ionic motion, providing results of broad theoretical and experimental interest.  相似文献   

11.
The theoretical principles underpinning the calculation of infrared spectra for condensed-phase systems in the context of ab initio molecular dynamics have been recently developed in literature. At present, most ab initio molecular dynamics calculations are restricted to relatively small systems and short simulation times. In this paper we devise a method that allows well-converged results for infrared spectra from ab initio molecular dynamics simulations using small systems and short trajectories characteristic of simulations typically performed in practice. We demonstrate the utility of our approach by computing the imaginary part of the dielectric constant epsilon"(omega) for H2O and D2O in solid and liquid phases and show that it compares well with experimental data. We further demonstrate that maximally localized Wannier orbitals can be used to separate the individual contributions of different molecular species to the linear spectrum of complex systems. The new spectral decomposition method is shown to be useful in present-day ab initio molecular dynamics calculations to compute the magnitude of the "continuous absorption" generated by excess protons in aqueous solutions with good accuracy even when other species present in the solutions absorb strongly in the same frequency window.  相似文献   

12.
Ab initio electronic structure theory calculations on cluster models support the characterization of the signature absorption spectrum of a solvated hydroxyl OH radical as a solvent-to-solute charge transfer state modulated by the hydrogen-bonding environment. Vertical excited states in OH(H2O)n clusters (n = 0-7, 16) calculated at the TDDFT level of theory (with companion calculations at the EOM-CCSD level of theory for n 相似文献   

13.
In contrast to the extensive theoretical investigation of the solvation phenomena, the dissolution phenomena have hardly been investigated theoretically. Upon the excitation of hydrated halides, which are important substances in atmospheric chemistry, an excess electron transfers from the anionic precursor (halide anion) to the solvent and is stabilized by the water cluster. This results in the dissociation of hydrated halides into halide radicals and electron-water clusters. Here we demonstrate the charge-transfer-to-solvent (CTTS)-driven femtosecond-scale dissolution dynamics for I-(H2O)n=2-5 clusters using excited state (ES) ab initio molecular dynamics (AIMD) simulations employing the complete-active-space self-consistent-field (CASSCF) method. This study shows that after the iodine radical is released from I-(H2O)n=2-5, a simple population decay is observed for small clusters (2 相似文献   

14.
Upon photoexcitation of iodide-water clusters, I(-)(H(2)O)(n), an electron is transferred from iodide to a diffuse cluster-supported, dipole-bound orbital. Recent femtosecond photoelectron spectroscopy experiments have shown that, for photoexcited I(-)(H(2)O)(n) (n≥ 5), complex excited-state dynamics ultimately result in the stabilization of the transferred electron. In this work, ab initio molecular dynamics simulations of excited-state I(-)(H(2)O)(5) and (H(2)O)(5)(-) are performed, and the simulated time evolution of their structural and electronic properties are compared to determine unambiguously the respective roles of the water molecules and the iodine atom in the electron stabilization dynamics. Results indicate that, driven by the iodine-hydrogen repulsive interactions, excited I(-)(H(2)O)(5) rearranges significantly from the initial ground-state minimum energy configuration to bind the excited electron more tightly. By contrast, (H(2)O)(5)(-) rearranges less dramatically from the corresponding configuration due to the lack of the same iodine-hydrogen interactions. Despite the critical role of iodine for driving reorganization in excited I(-)(H(2)O)(5), excited-electron vertical detachment energies appear to be determined mostly by the water cluster configuration, suggesting that femtosecond photoelectron spectroscopy primarily probes solvent reorganization in photoexcited I(-)(H(2)O)(5).  相似文献   

15.
We present a theoretical approach for the ultrafast nonadiabatic dynamics based on the ab initio molecular dynamics carried out "on the fly" in the framework of the configuration interaction method combined with Tully's surface hopping algorithm for nonadiabatic transitions. This approach combined with our Wigner distribution approach allows us to perform accurate simulations of femtosecond pump-probe spectra in the systems where radiationless transitions among electronic states take place. In this paper we illustrate this by theoretical simulation of ultrafast processes and nonradiative relaxation in the Na(3)F cluster, involving three excited states and the ground electronic state. Furthermore, we show that our accurate simulation of the photoionization pump-probe spectrum is in full agreement with the experimental signal. Based on the nonadiabatic dynamics at high level of accuracy and taking into account all degrees of freedom, the nonradiative lifetime for the 1 (1)B(1) excited state of Na(3)F has been determined to be approximately 900 fs.  相似文献   

16.
17.
We use ab initio electronic structure methods to calculate the many-body decomposition of the binding energies of the OH.(H2O)n (n=2,3) complexes. We employ MP2 and CCSD(T) levels of theory with aug-cc-pVDZ and aug-cc-pVTZ basis sets and analyze the significance of the nonpairwise interactions between OH radical and the surrounding water molecules. We also evaluate the accuracy of our newly developed potential function, the modified Thole-type model, for predicting the many-body terms in these complexes. Our analysis of the many-body contributions to the OH.(H2O)n binding energies clearly shows that they are just as important in the OH interactions with water as they are for interactions in pure water systems.  相似文献   

18.
The unimolecular chemistry of protonated formic acid, [HCOOH]H(+), has been investigated by analyzing the fragmentation of metastable ions (MI) during flight in a sector mass spectrometer, and by proton transfer to formic acid in a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer. High level ab initio calculations have been used to model the relevant parts of the potential energy surface (PES). In addition, ab initio direct dynamics calculations have been conducted, tracing out 60 different reaction trajectories. The only stable isomer in the mass spectrometric experiments is HC(OH)(2)(+), which is the precursor to both observed ionic products, HCO(+) and H(3)O(+), via the same saddle point of the potential energy surface. The detailed motion of the dissociating molecule during passage of the post-transition state region of the PES therefore determines which product ion is formed. After passing the TS a transient HC(O)OH(2)(+) molecule is first formed. High total energy increases the probability that the nascent water molecule will have sufficient speed to escape the HCO(+) moiety. Otherwise, typically at low energies, the two units recombine, upon which intra-complex proton transfer is very likely. Eventually, this will give the more stable H(3)O(+).  相似文献   

19.
The lowest-energy electronic transitions in the hydroxyl radical and the hydrogen bound complex H(2)O.HO have been studied using ab initio methods. We have used the complete active-space self-consistent field and multireference configuration interaction (MRCI) methods to calculate vertical excitation energies and oscillator strengths. At the MRCI level the lowest-lying (2)Sigma(+)<--(2)Pi electronic transition is redshifted by about 2500 cm(-1) upon formation of the H(2)O.HO complex. We propose that this transition could be used to identify the complex in the gas phase, which in turn could be used to examine the role of H(2)O.HO in atmospheric reactions.  相似文献   

20.
A direct ab initio molecular dynamics method has been applied to a water monomer and water clusters (H(2)O)(n) (n = 1-3) to elucidate the effects of zero-point energy (ZPE) vibration on the absorption spectra of water clusters. Static ab initio calculations without ZPE showed that the first electronic transitions of (H(2)O)(n), (1)B(1)←(1)A(1), are blue-shifted as a function of cluster size (n): 7.38 eV (n = 1), 7.58 eV (n = 2) and 8.01 eV (n = 3). The inclusion of the ZPE vibration strongly affects the excitation energies of a water dimer, and a long red-tail appears in the range of 6.42-6.90 eV due to the structural flexibility of a water dimer. The ultraviolet photodissociation of water clusters and water ice surfaces is relevant to these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号