首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In the X (3872) decay, both of the ${{J/{\psi\pi\pi}}}$ and ${{J/{\psi\pi\pi\pi}}}$ branching fractions are observed experimentally, and their sizes are comparable to each other. In order to clarify the mechanism to cause such a large isospin violation, we investigate X(3872) employing a model of coupled-channel two-meson scattering with a ${{\rm c}\bar{c}}$ core. The two-meson states consist of ${{D^0\overline{D}^{*0}}}$ , D + D *?, ${{J/{\psi\rho}}}$ , and ${{J/{\psi\omega}}}$ . The effects of the ρ and ω meson width are also taken into account. We calculate the transfer strength from the ${{{\rm c}\bar{c}}}$ core to the final two-meson states. It is found that very narrow ${{J/{\psi\rho}}}$ and ${{J/{\psi\omega}}}$ peaks appear very close to the ${{D^0\overline{D}^{*0}}}$ threshold for a wide range of variation in the parameter sets. The size of the ${{J/{\psi\rho}}}$ peak is almost the same as that of ${{J/{\psi\omega}}}$ , which is consistent with the experiments. The large width of the ρ meson makes the originally small isospin violation by about five times larger.  相似文献   

2.
In our previous coupled channel analysis based on the Cornell effective quark–quark interaction, it was indicated that the ${\psi(3S)}$ solution corresponding to ${\psi(4040)}$ originates from a ${{\rm D}^{^{*}}\overline{{\rm D}}^{*}}$ channel state. In this article, we report on a simultaneous analysis of the ${\psi}$ - and ${\Upsilon}$ -family states. The most conspicuous outcome is a finding that the ${\Upsilon(5S)}$ solution corresponding to ${\Upsilon(10860)}$ originates from a ${{\rm B}^{*}\overline{{\rm B}}^{*}}$ channel state, very much like ${\psi(3S)}$ . Some other characteristics of the result, including the induced very large SD mixing and relation of some of the solutions with newly observed heavy quarkonia-like states are discussed.  相似文献   

3.
The symmetric algebra ${S(\mathfrak{g})}$ over a Lie algebra ${\mathfrak{g}}$ has the structure of a Poisson algebra. Assume ${\mathfrak{g}}$ is complex semisimple. Then results of Fomenko–Mischenko (translation of invariants) and Tarasov construct a polynomial subalgebra ${{\mathcal {H}} = {\mathbb C}[q_1,\ldots,q_b]}$ of ${S(\mathfrak{g})}$ which is maximally Poisson commutative. Here b is the dimension of a Borel subalgebra of ${\mathfrak{g}}$ . Let G be the adjoint group of ${\mathfrak{g}}$ and let ? = rank ${\mathfrak{g}}$ . Using the Killing form, identify ${\mathfrak{g}}$ with its dual so that any G-orbit O in ${\mathfrak{g}}$ has the structure (KKS) of a symplectic manifold and ${S(\mathfrak{g})}$ can be identified with the affine algebra of ${\mathfrak{g}}$ . An element ${x\in \mathfrak{g}}$ will be called strongly regular if ${\{({\rm d}q_i)_x\},\,i=1,\ldots,b}$ , are linearly independent. Then the set ${\mathfrak{g}^{\rm{sreg}}}$ of all strongly regular elements is Zariski open and dense in ${\mathfrak{g}}$ and also ${\mathfrak{g}^{\rm{sreg}}\subset \mathfrak{g}^{\rm{ reg}}}$ where ${\mathfrak{g}^{\rm{reg}}}$ is the set of all regular elements in ${\mathfrak{g}}$ . A Hessenberg variety is the b-dimensional affine plane in ${\mathfrak{g}}$ , obtained by translating a Borel subalgebra by a suitable principal nilpotent element. Such a variety was introduced in Kostant (Am J Math 85:327–404, 1963). Defining Hess to be a particular Hessenberg variety, Tarasov has shown that ${{\rm{Hess}}\subset \mathfrak{g}^{\rm{sreg}}}$ . Let R be the set of all regular G-orbits in ${\mathfrak{g}}$ . Thus if ${O\in R}$ , then O is a symplectic manifold of dimension 2n where n = b ? ?. For any ${O\in R}$ let ${O^{\rm{sreg}} = \mathfrak{g}^{\rm{sreg}} \cap O}$ . One shows that O sreg is Zariski open and dense in O so that O sreg is again a symplectic manifold of dimension 2n. For any ${O\in R}$ let ${{\rm{Hess}}(O) = {\rm{Hess}}\cap O}$ . One proves that Hess(O) is a Lagrangian submanifold of O sreg and that $${\rm{Hess}} = \sqcup_{O\in R}{\rm{Hess}}(O).$$ The main result of this paper is to show that there exists simultaneously over all ${O\in R}$ , an explicit polarization (i.e., a “fibration” by Lagrangian submanifolds) of O sreg which makes O sreg simulate, in some sense, the cotangent bundle of Hess(O).  相似文献   

4.
We have investigated theoretically a feasible nuclear reaction to produce light double-Λ hypernuclei by choosing a suitable target. In the reaction from stopped Ξ ? on 6Li target light doubly-strange nuclei, ${^5_{\Lambda\Lambda}{\rm H}}$ and ${^6_{\Lambda\Lambda}{\rm He}}$ , are produced: we have calculated the formation ratio of ${^5_{\Lambda\Lambda}{\rm H}}$ to ${^6_{\Lambda\Lambda}{\rm He}}$ for Ξ ? absorptions from 2S, 2P and 3D orbitals of Ξ ?6Li atom by assuming a d?α cluster model for 6Li. From this cluster model the d?α relative wave functions has a node due to Pauli exclusion among nucleons belonging to d and α clusters. Two kinds of d?α wave functions, namely 1s relative wave function with a phenomenological one-range Gaussian (ORG) potential and that of an orthogonality-condition model (OCM) are used. It is found that the probability of ${^5_{\Lambda\Lambda}{\rm H}}$ formation is larger than that of ${^6_{\Lambda\Lambda}{\rm He}}$ for all absorption orbitals: in the case of the major 3D absorption their ratio is 1.08 for ORG and 1.96 for OCM. The dominant low momentum component of the d?α relative wave function favors the ${^5_{\Lambda\Lambda}{\rm H}}$ formation with a low Q value compared to the ${^6_{\Lambda\Lambda}{\rm He}}$ formation with a high Q value. We have also calculated momentum distributions of emitted particles, d and n, displaying continuum spectra for single-Λ hypernuclei, ${^4_{\Lambda}{\rm H}}$ and ${^5_{\Lambda}{\rm He}}$ , and line spectra for the ${^5_{\Lambda\Lambda}{\rm H}}$ and ${^6_{\Lambda\Lambda}{\rm He}}$ nuclei. Thus, our present theoretical analysis would be a significant contribution to experiments in the strangeness ?2 sector of hypernuclear physics.  相似文献   

5.
We have measured all deuteron analyzing powers ${(A_{y}^{d}, A_{yy}, A_{xx}, A_{xz})}$ for deuteron-proton elastic scattering at 294 MeV/nucleon in order to study the properties of three nucleon forces (3 NFs). Measurement was made at in an angular range of ${\theta_{{\rm c.m.}} = 35.6^{\circ} - 163.0^{\circ}}$ . Obtained data were compared with Faddeev calculations with and without the 3 NFs. At ${\theta_{{\rm c.m.}}\lesssim 120^{\circ}}$ all the data have general agreement with the calculations, while the measured data at ${\theta_{{\rm c.m.}} \gtrsim 120^{\circ}}$ are not explained by any theoretical calculations. These results were consistent with those at 250 MeV/nucleon.  相似文献   

6.
A few-body type computation is performed for a three-charge-particle collision with participation of a slow antiproton ${\bar{\rm{p}}}$ and a muonic muonium atom (true muonium), i.e. a bound state of two muons ${(\mu^{+}\mu^{-})}$ in its ground state. The total cross section of the following reaction ${\bar{\rm p}+(\mu^{+}\mu^{-}) \rightarrow \bar{\rm{H}}_{\mu} + \mu^{-}}$ , where muonic anti-hydrogen ${\bar{\rm{H}}_{\mu}=(\bar{\rm p}\mu^{+})}$ is a bound state of an antiproton and positive muon, is computed in the framework of a set of coupled two-component Faddeev-Hahn-type equation. A better known negative muon transfer low energy three-body reaction: ${{\rm t}^{+} + ({\rm d}^{+}\mu^{-})\rightarrow ({\rm t}^{+}\mu^{-}) + {\rm d}^{+}}$ is also computed as a test system. Here, t+ is triton and d+ is deuterium.  相似文献   

7.
Continuing studies into an all-diode laser-based 3.3 μm difference frequency generation cavity ring-down spectroscopy system are presented. Light from a 1,560 nm diode laser, amplified by an erbium-doped fibre amplifier, was mixed with 1,064 nm diode laser radiation in a bulk periodically poled lithium niobate crystal to generate 16 μW of mid-IR light at 3,346 nm with a conversion efficiency of $0.05\,\%\,{\text{W}}^{-1}\,{\text{cm}}^{-1}$ . This radiation was coupled into a 77 cm long linear cavity with average mirror reflectivities of 0.9996, and a measured baseline ring-down time of $6.07\pm 0.03\,\upmu{\rm s}$ . The potential of such a spectrometer was illustrated by investigating the $P(3)$ transition in the fundamental $\nu_{3}(F_{2})$ band of ${\text{CH}}_4$ both in a 7.5 ppmv calibrated mixture of ${\text{CH}}_4$ in air and in breath samples from methane and non-methane producers under conditions where the minimum detectable absorption coefficient ( $\alpha_{\rm min}$ ) was $2.8 \times 10^{-8}\,{\rm cm}^{-1}$ over 6 s using a ring-down time acquisition rate of 20 Hz. Allan variance measurements indicated an optimum $\alpha_{\rm min}$ of $2.9\times 10^{-9}\,{\rm cm}^{-1}$ over 44 s.  相似文献   

8.
We prove that self-avoiding walk on ${\mathbb{Z}^d}$ is sub-ballistic in any dimension d ≥ 2. That is, writing ${\| u \|}$ for the Euclidean norm of ${u \in \mathbb{Z}^d}$ , and ${\mathsf{P_{SAW}}_n}$ for the uniform measure on self-avoiding walks ${\gamma : \{0, \ldots, n\} \to \mathbb{Z}^d}$ for which γ 0 = 0, we show that, for each v > 0, there exists ${\varepsilon > 0}$ such that, for each ${n \in \mathbb{N}, \mathsf{P_{SAW}}_n \big( {\rm max}\big\{\| \gamma_k \| : 0 \leq k \leq n\big\} \geq vn \big) \leq e^{-\varepsilon n}}$ .  相似文献   

9.
We calculate multireference configuration-interaction wavefunctions and the potential-energy curves for the $ {B^3}\Sigma_u^{-} $ and $ {X^3}\Sigma_g^{-} $ states of the collision-free S2 molecule and the T-shape collision complex S2?CHe using cc-pVQZ basis sets. We obtain the transition dipole moments of the $ {{\text{S}}_2}\left( {{B^3}\Sigma_u^{-} \to {X^3}\Sigma_g^{-} } \right) $ and the Franck?CCondon factors between the vibrational levels of this two states. We evaluate the radiative lifetimes of $ {{\text{S}}_2}\left( {{B^3}\Sigma_u^{-} \left( {{\upsilon^{\prime}} = 0 - 9} \right)} \right) $ levels of the collision complex and the collision-free molecule and compare them with the experiments. The collision provides little change in the radiative lifetimes of $ {{\text{S}}_2}\left( {{B^3}\Sigma_u^{-} \left( {{\upsilon^{\prime}} = 0 - 9} \right)} \right) $ according to the previous calculations. We obtain excellent agreement between the theoretical results and the experiments. The data calculated are very useful in the study of the microwave-driven high-pressure sulfur lamp and an S2 laser pumped by a transverse fast discharge.  相似文献   

10.
Charmonium rescattering effects in the M1 transition of $ \psi$ (2S) $ \rightarrow$ $ \gamma$ $ \eta_{c}^{}$ are investigated by modeling a $ \chi_{{cJ}}^{}$ or J/ $ \psi$ rescattering into a $ \eta_{c}^{}$ final state. The absorptive and dispersive part of the transition amplitudes for the rescattering loops of $ \eta$ $ \psi$ ( $ \gamma^{{\ast}}_{}$ ) and $ \gamma$ $ \chi$ ( $ \psi$ ) are separately evaluated. The numerical results show that the contribution from the $ \gamma$ $ \chi$ ( $ \psi$ ) rescattering process is negligible. Compared with the virtual D $ \bar{{D}}$ (D *) rescattering processes, the $ \eta$ $ \psi$ ( $ \gamma^{{\ast}}_{}$ ) process may be regarded as the next-leading order of the hadronic loop mechanism, which only offers the partial decay width of ~ 0.045 keV to the $ \psi$ (2S) $ \rightarrow$ $ \gamma$ $ \eta_{c}^{}$ .  相似文献   

11.
Emiko Hiyama 《Few-Body Systems》2012,53(3-4):189-236
Recent development in the study of the structure of light Λ and double Λ hypernuclei is reviewed from the view point of few-body problems and interactions between the constituent particles. In the study the present author and collaborators employed Gaussian expansion method for few-body calculations; the method has been applied to many kinds of few-body systems in the fields of nuclear physics and exotic atomic/molecular physics. We reviewed the following subjects studied using the method: (1) Precise three- and four-body calculations of ${^7_{\Lambda}{\rm He}}$ , ${^7_{\Lambda}{\rm Li}}$ , ${^7_{\Lambda}{\rm Be}}$ , ${^8_{\Lambda}{\rm Li}}$ , ${^8_{\Lambda}{\rm Be}}$ , ${^9_{\Lambda}{\rm Be}}$ , ${^{10}_{\Lambda}{\rm Be}}$ , ${^{10}_{\Lambda}{\rm B}}$ and ${^{13}_{\Lambda}{\rm C}}$ provide important information on the spin structure of the underlying Λ N interaction by comparing the calculated results with the recent experimental data by γ-ray hypernuclear spectroscopy. (2) The Λ-Σ coupling effect was investigated in ${^4_{\Lambda}{\rm H}}$ and ${^4_{\Lambda}{\rm He}}$ on the basis of the N?+?N?+?N?+?Λ (Σ) four-body model. (3) A systematic study of double-Λ hypernuclei and the Λ Λ interaction, based on the NAGARA event data ( ${^6_{\Lambda\Lambda}{\rm He}}$ ), was performed within the α +?x?+?Λ +?Λ cluster model (x = n, p, d, t,3He and α) and α +?α +?n?+?Λ +?Λ cluster model, (4) The Demachi-Yanagi event was interpreted as observation of the 2+ state of ${^{10}_{\Lambda \Lambda}{\rm Be}}$ , (5) The Hida event was interpreted as observation of the ground state of ${^{11}_{\Lambda \Lambda}{\rm Be}}$ .  相似文献   

12.
The process p $ \bar{{p}}$ $ \rightarrow$ $ \Lambda_{c}^{+}$ $ \bar{{\Lambda}}_{c}^{-}$ is investigated within the handbag approach. It is shown to lowest order of perturbative QCD that, under the assumption of restricted parton virtualities and transverse momenta, the dominant dynamical mechanism, characterized by the partonic subprocess u $ \bar{{u}}$ $ \rightarrow$ c $ \bar{{c}}$ , factorizes in the sense that only the subprocess contains highly virtual partons, namely a gluon, while the hadronic matrix elements embody only soft scales and can be parameterized in terms of helicity flip and non-flip generalized parton distributions. Modelling the latter functions by overlaps of light-cone wave functions for the involved baryons we are able to predict cross-sections and spin correlation parameters for the process of interest.  相似文献   

13.
Previous works have been made on the improvement of selectivity of ion exchange membranes using adsorption of polyelectrolyte on the surface of the materials. The modification of the surface material in the case of an anion exchange membrane concerns the hydrophilic/hydrophobic balance properties and its relationship with the hydration state. Starting from this goal, the AMX membrane has been modified, in this work, by adsorption of polyethyleneimine on its surface. Many conditions of modification of the AMX membrane surface were studied. A factorial experimental design was used for determining the influent parameters on the AMX membrane modification. The results obtained have shown that the initial concentration of polyethyleneimine and the pH of solution were the main influent parameters on the adsorption of polyethyleneimine on the membrane surface. Competitive ion exchange reactions were studied for the modified and the unmodified membrane involving $ {\text{C}}{{\text{l}}^{ - }} $ , $ {\text{NO}}_3^{ - } $ and $ {\text{SO}}_4^{{2 - }} $ ions. All experiments were carried out at constant concentration of 0.3?mol?L?1 and at 25?°C. Ion exchange isotherms for the binary systems $ \left( {{\text{C}}{{\text{l}}^{ - }}/{\text{NO}}_3^{ - }} \right) $ , $ \left( {{\text{C}}{{\text{l}}^{ - }}/{\text{SO}}_4^{{2 - }}} \right) $ and $ \left( {{\text{NO}}_3^{ - }/{\text{SO}}_4^{{2 - }}} \right) $ were studied. The obtained results show that chloride was the most sorbed and the selectivity order both for the modified membrane and the unmodified one is: $ {\text{Cl}} > {\text{NO}}_3^{ - } > {\text{SO}}_4^{{2 - }} $ , under the experimental conditions. Selectivity coefficients $ {\text{K}}_{{{\text{C}}{{\text{l}}^{ - }}}}^{{{\text{NO}}_3^{ - }}} $ , $ {\text{K}}_{{2{\text{C}}{{\text{l}}^{ - }}}}^{{{\text{SO}}_4^{{2 - }}}} $ and $ {\text{K}}_{{2{\text{NO}}_3^{ - }}}^{{{\text{SO}}_4^{{2 - }}}} $ for the three binary systems and for the two membranes were determined. It was also observed that for the modified membrane the selectivity towards sulfate ion decrease and the modified membrane became more selective towards monovalent anions.  相似文献   

14.
15.
Let ${Y_{m|n}^{\ell}}$ be the super Yangian of general linear Lie superalgebra for ${\mathfrak{gl}_{m|n}}$ . Let ${e \in \mathfrak{gl}_{m\ell|n\ell}}$ be a “rectangular” nilpotent element and ${\mathcal{W}_e}$ be the finite W-superalgebra associated to e. We show that ${Y_{m|n}^{\ell}}$ is isomorphic to ${\mathcal{W}_e}$ .  相似文献   

16.
Three-charge-particle collisions with participation of ultra-slow antiprotons ( \(\overline {\rm {p}}\) ) is the subject of this work. Specifically we compute the total cross sections and corresponding thermal rates of the following three-body reactions: \(\overline {\rm p}+(e^+e^-) \rightarrow \overline {\rm {H}} + e^-\) and \(\overline {\rm p}+(\mu ^+\mu ^-) \rightarrow \overline {\rm {H}}_{\mu } + \mu ^-\) , where \(e^-(\mu ^-)\) is an electron (muon) and \(e^+(\mu ^+)\) is a positron (antimuon) respectively, \(\overline {\rm {H}}=(\overline {\rm p}e^+)\) is an antihydrogen atom and \(\overline {\rm {H}}_{\mu }=(\overline {\rm p}\mu ^+)\) is a muonic antihydrogen atom, i.e. a bound state of \(\overline {\rm {p}}\) and μ +. A set of two-coupled few-body Faddeev-Hahn-type (FH-type) equations is numerically solved in the framework of a modified close-coupling expansion approach.  相似文献   

17.
The Lie–Rinehart algebra of a (connected) manifold ${\mathcal {M}}$ , defined by the Lie structure of the vector fields, their action and their module structure over ${C^\infty({\mathcal {M}})}$ , is a common, diffeomorphism invariant, algebra for both classical and quantum mechanics. Its (noncommutative) Poisson universal enveloping algebra ${\Lambda_{R}({\mathcal {M}})}$ , with the Lie–Rinehart product identified with the symmetric product, contains a central variable (a central sequence for non-compact ${{\mathcal {M}}}$ ) ${Z}$ which relates the commutators to the Lie products. Classical and quantum mechanics are its only factorial realizations, corresponding to Z  =  i z, z  =  0 and ${z = \hbar}$ , respectively; canonical quantization uniquely follows from such a general geometrical structure. For ${z =\hbar \neq 0}$ , the regular factorial Hilbert space representations of ${\Lambda_{R}({\mathcal{M}})}$ describe quantum mechanics on ${{\mathcal {M}}}$ . For z  =  0, if Diff( ${{\mathcal {M}}}$ ) is unitarily implemented, they are unitarily equivalent, up to multiplicity, to the representation defined by classical mechanics on ${{\mathcal {M}}}$ .  相似文献   

18.
In this paper we show how the ATHENA data samples on the antihydrogen ( ${\bar{\rm H}}$ ) formation in very different conditions provide useful information on the two different possible mechanisms: the 3-body reaction ( $\bar{p}+{e^+}+{e^+}\rightarrow {\bar{\rm H}}+ e^+$ ) and the 2-body reaction ( $\bar{p}+{\rm e^+}\rightarrow {\bar{\rm H}}+{h\nu}$ ).  相似文献   

19.
In this article, we present a brief review of the discoveries of kinds of antimatter particles, including positron ( $ \bar e $ ), antiproton ( $ \bar p $ ), antideuteron ( $ \bar d $ ) and antihelium-3 ( $ ^3 \overline {He} $ ). Special emphasis is put on the discovery of the antihypertriton( $ \frac{3} {\Lambda }\overline H $ ) and antihelium-4 nucleus ( $ ^4 \overline {He} $ , or $ \bar \alpha $ ) which were reported by the RHIC-STAR experiment very recently. In addition, brief discussions about the effort to search for antinuclei in cosmic rays and study of the longtime confinement of the simplest antimatter atom, antihydrogen are also given. Moreover, the production mechanism of anti-light nuclei is introduced.  相似文献   

20.
The Schrödinger  equation for a particle of rest mass $m$ and electrical charge $ne$ interacting with a four-vector potential $A_i$ can be derived as the non-relativistic limit of the Klein–Gordon  equation $\left( \Box '+m^2\right) \varPsi =0$ for the wave function $\varPsi $ , where $\Box '=\eta ^{jk}\partial '_j\partial '_k$ and $\partial '_j=\partial _j -\mathrm {i}n e A_j$ , or equivalently from the one-dimensional  action $S_1=-\int m ds +\int neA_i dx^i$ for the corresponding point particle in the semi-classical approximation $\varPsi \sim \exp {(\mathrm {i}S_1)}$ , both methods yielding the equation $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2m}\eta ^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + m + n e\phi \right) \varPsi $ in Minkowski  space–time  , where $\alpha ,\beta =1,2,3$ and $\phi =-A_0$ . We show that these two methods generally yield equations  that differ in a curved background  space–time   $g_{ij}$ , although they coincide when $g_{0\alpha }=0$ if $m$ is replaced by the effective mass $\mathcal{M}\equiv \sqrt{m^2-\xi R}$ in both the Klein–Gordon  action $S$ and $S_1$ , allowing for non-minimal coupling to the gravitational  field, where $R$ is the Ricci scalar and $\xi $ is a constant. In this case $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2\mathcal{M}'} g^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + \mathcal{M}\phi ^{(\mathrm g)} + n e\phi \right) \varPsi $ , where $\phi ^{(\mathrm g)} =\sqrt{g_{00}}$ and $\mathcal{M}'=\mathcal{M}/\phi ^{(\mathrm g)} $ , the correctness of the gravitational  contribution to the potential having been verified to linear order $m\phi ^{(\mathrm g)} $ in the thermal-neutron beam interferometry experiment due to Colella et al. Setting $n=2$ and regarding $\varPsi $ as the quasi-particle wave function, or order parameter, we obtain the generalization of the fundamental macroscopic Ginzburg-Landau equation of superconductivity to curved space–time. Conservation of probability and electrical current requires both electromagnetic gauge and space–time  coordinate conditions to be imposed, which exemplifies the gravito-electromagnetic analogy, particularly in the stationary case, when div ${{\varvec{A}}}=\hbox {div}{{\varvec{A}}}^{(\mathrm g)}=0$ , where ${{\varvec{A}}}^{\alpha }=-A^{\alpha }$ and ${{\varvec{A}}}^{(\mathrm g)\alpha }=-\phi ^{(\mathrm g)}g^{0\alpha }$ . The quantum-cosmological Schrödinger  (Wheeler–DeWitt) equation is also discussed in the $\mathcal{D}$ -dimensional  mini-superspace idealization, with particular regard to the vacuum potential $\mathcal V$ and the characteristics of the ground state, assuming a gravitational  Lagrangian   $L_\mathcal{D}$ which contains higher-derivative  terms up to order $\mathcal{R}^4$ . For the heterotic superstring theory  , $L_\mathcal{D}$ consists of an infinite series in $\alpha '\mathcal{R}$ , where $\alpha '$ is the Regge slope parameter, and in the perturbative approximation $\alpha '|\mathcal{R}| \ll 1$ , $\mathcal V$ is positive semi-definite for $\mathcal{D} \ge 4$ . The maximally symmetric ground state satisfying the field equations is Minkowski  space for $3\le {\mathcal {D}}\le 7$ and anti-de Sitter  space for $8 \le \mathcal {D} \le 10$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号