首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Halogen bonding has recently become an effective tool to control the spin state of reactive carbenes. In this work, a series of the complexes of diphenylcarbene (DPC) that has a triplet ground state with several halogen bond donors RX were theoretically studied, and in particular, the influence of the formation of halogen bonding on the spin state of DPC was extensively explored. The spin flip depends on the difference of halogen bond energies between triplet and singlet, that is, when the difference is large enough a spin flip may occur. Furthermore, the variations of the geometries on complexation may induce the potential energy surfaces of different spin states to intersect, thus leading to intersystem crossing. Based on the energy analysis of the minimum energy crossing points (MECPs), the systems with a smaller MECP‐triplet energy barrier go through intersystem crossing more easily. Halogen bonds in the complexes, where a spin flip takes place, exhibit a partially covalent character, while other complexes show conventional behaviors of halogen bonding. According to charge decomposition analysis, the charge transfer from HOMO (DPC) to LUMO (RX) is identified as a prominent stabilizing interaction in the whole complexes.  相似文献   

2.
We present a detailed SCS‐MP2 study on the potential energy curves (PEC) for interactions between diatomic halogen molecules and pyrene. BSSE corrected CCSD[T] energies at equilibrium distances are computed and compared to CCSD(T) energies. The most stable conformation of these weakly bound van der Waals complexes is almost linear in the perpendicular direction to the pyrene plane. The complexes of highly polarizable bromine and iodine molecules with pyrene are very stable and they carry rather large number of vibrational states. Despite its small size, F2 also forms strong halogen bonding similar to Br2 and I2. The interaction between Cl2 and pyrene is the weakest and it is attributed to the highest polarizability / molar mass ratio of chlorine among the others. I2‐pyrene is found to be the most stable complex due to the strongest mutual polarization effects and is carrying more than 60 vibrational states. Due to the rather large number of electrons in some complexes, the relativistic corrections are also considered. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
Inspired by the recent interest of halogen bonding (XB) in the solid state, we detail a comprehensive benchmark study of planewave DFT geometry and interaction energy of lone-pair (LP) type and aromatic (AR) type halogen bonded complexes, using PAW and USPP pseudopotentials. For LP-type XB dimers, PBE-PAW generally agrees with PBE/aug-cc-pVQZ(−pp) geometries but significantly overbinds compared to CCSD(T)/aug-cc-pVQZ(-pp). Grimme's D3 dispersion corrections to PBE-PAW gives better agreement to the MP2/cc-pVTZ(-pp) results for AR-type dimers. For interaction energies, PBE-PAW may overbind or underbind for weaker XBs but clearly overbinds for stronger XBs. D3 dispersion corrections exacerbate the overbinding problem for LP-type complexes but significantly improves agreement for AR-type complexes compared to CCSD(T)/CBS. Finally, for periodic XB crystals, planewave PBE methods slightly underestimate the XB lengths by 0.03 to 0.05 Å. © 2019 Wiley Periodicals, Inc.  相似文献   

4.
Cooperative action of hydrogen and halogen bonding in the reaction of 3‐(3,5‐di‐tert‐butyl‐4‐hydroxyphenyl)‐1‐phenylprop‐2‐en‐1‐one with HCl or HBr in alcohol medium under microwave irradiation (20 W, 80 °C, 10 min) allows the isolation of the haloetherification products (2S,3S)‐3‐(3‐tert‐butyl‐5‐chloro‐4‐hydroxyphenyl)‐2‐chloro‐3‐ethoxy‐1‐phenylpropan‐1‐one, C21H24Cl2O3, (2S,3S)‐2‐bromo‐3‐(3‐tert‐butyl‐5‐bromo‐4‐hydroxyphenyl)‐3‐methoxy‐1‐phenylpropan‐1‐one, C20H22Br2O3, and (2S,3S)‐2‐bromo‐3‐(3‐tert‐butyl‐5‐bromo‐4‐hydroxyphenyl)‐3‐ethoxy‐1‐phenylpropan‐1‐one, C21H24Br2O3, in good yields. Both types of noncovalent interactions, e.g. hydrogen and halogen bonds, are formed to stabilize the obtained products in the solid state.  相似文献   

5.
6.
The N.Br halogen bonding drives the self-assembly of 1,4-dibromotetrafluorobenzene (1 a) and its 1,3 or 1,2 analogues (1 b,c, respectively) with dipyridyl derivatives 2 a,b. The isomeric supramolecular architectures 3 a-f are obtained as cocrystals that are stable in the air at room temperature. The solid-state features of these 1D infinite chains 3 have been fully characterized by single-crystal X-ray, Raman, and IR analyses. The occurrence of N.Br halogen bonding in solution has been detected with (19)F NMR spectroscopy. The N.Br halogen bonding is highly selective and directional and the geometry of the single strands of noncovalent copolymers 3 is programmed by the geometry of halogen-bonding donor and acceptor sites on the starting modules. The composition and topology of the instructed networks can be predicted with great accuracy. Experiments of competitive cocrystal formation established the strength of the N.Br interaction relative to other halogen bondings and the ability of different modules 1 to be involved in site-selective supramolecular syntheses.  相似文献   

7.
8.
In this study, we propose a simple and yet effective approach for capture and storage of CO2 by C6Li6. C6Li6 possesses a planar star-like structure, whose ionization energy is lower than that of Li atom and hence, it behaves as a superalkali. We have systematically studied the interaction of successive CO2 molecules with C6Li6 using long-range dispersion corrected density functional ωB97xD/6-311 + G(d) calculations. We notice that these interactions lead to stable C6Li6-nCO2 complexes (n = 1-6) in which the structure of CO2 moieties is bent appreciably (122-125°) due to electron transfer from C6Li6, whose planarity is distorted only slightly (≤7°). This clearly suggests that the CO2 molecules can successfully be activated and captured by C6Li6. It has been also noticed that the bond-length of CO2 in C6Li6-nCO2 complexes increases monotonically whereas adsorption energy decreases, ranging 3.18-2.79 eV per CO2 with the increase in n. These findings establish the potential of C6Li6 for capture and storage of CO2 molecules.  相似文献   

9.
10.
Engineering functional materials endowed with unprecedented properties require the exploitation of new intermolecular interactions, which can determine the characteristics of the bulk materials. The great potential of Halogen Bonding (XB), namely any noncovalent interaction involving halogens as electron acceptors, in the design of new and high‐value functional materials is now emerging clearly. This Highlight will give a detailed overview on the energetic and geometric features of XB, showing how some of them are quite constant in most of the formed supramolecular complexes (e.g., the angle formed by the covalent and the noncovalent bonds around the halogen atom), while some others depend strictly on the nature of the interacting partners. Then, several specific examples of halogen‐bonded supramolecular architectures, whose structural aspects as well as applications in fields as diverse as enantiomers' separation, crystal engineering, liquid crystals, natural, and synthetic receptors, will be fully described. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: PolymChem 45: 1–15, 2007  相似文献   

11.
A study of the halogen...halogen contacts in organic compounds using ab initio calculations and the results of previously reported crystallographic studies show that these interactions are controlled by electrostatics. These contacts can be represented by the geometric parameters of the C--X1...X2--C moieties (where theta1=C--X1...X2 and theta2=X1...X2--C; ri=X1...X2 distance). The distributions of the contacts within the sum of van der Waals radii (rvdW) versus thetai (theta1=theta2) show a maximum at theta approximately 150 degrees for X=Cl, Br, and I. This maximum is not seen in the distribution of F...F contacts. These results are in good agreement with our ab initio calculations. The theoretical results show that the position of the maximum depends on three factors: 1) The type of halogen atom, 2) the hybridization of the ipso carbon atom, and 3) the nature of the other atoms that are bonded to the ipso carbon atom apart from the halogen atom. Calculations show that the strength of these contacts decreases in the following order: I...I>Br...Br>Cl...Cl. Their relative strengths decrease as a function of the hybridization of the ipso carbon atom in the following order: sp2>sp>sp3. Attaching an electronegative atom to the carbon atom strengthens the halogen...halogen contacts. An electrostatic model is proposed based on two assumptions: 1) The presence of a positive electrostatic end cap on the halogen atom (except for fluorine) and 2) the electronic charge is anisotropically distributed around the halogen atom.  相似文献   

12.
In the past, noncovalent interactions have been extensively studied by electrochemical methods. In this context, halogen bonding (XB) has been a long-time overlooked item in the toolbox of supramolecular chemistry. The article is treating electrochemical activation of XB in solution and at the solid–liquid interface. Key principles and recent work on the use of electrochemistry as a tool for detecting and controlling XB are reported. Different types of redox-switching XB are identified in the context of molecular recognition and detection. First evidence for XB promoted electron transfer reactions involving the activation of covalent bonds represents a completely new and emerging domain, ripe for exploration.  相似文献   

13.
The co-crystallization of tetracyanobenzene (TCB) with haloarenes ArX provided six new co-crystals TCB ⋅ ArX (ArX=PhCl, PhBr, 4-MeC6H4Cl, 4-MeC6H4Br, 4-MeOC6H4Cl, 1,2-Br2C6H4) which were studied by X-ray diffraction. In these systems, the strong collective effect of π⋅⋅⋅π stacking interactions and lone pair-(X)⋅⋅⋅π-hole-(C) bondings between TCB and ArX promote the strength of X⋅⋅⋅Ncyano halogen bonding (HaB). Theoretical studies showed that the stacking interactions affect the σ-hole depth of the haloarenes, thus significantly boosting their ability to function as HaB donors. According to the molecular electrostatic potential calculations, the σ- hole-(Cl) value (1.5 kcal/mol) in the haloarene 4-MeOC6H4Cl (featuring an electron-rich arene moiety and exhibiting very poor σ-hole-(Cl) ability) increases significantly in the stacked trimer (TCB)2 ⋅ 4-MeOC6H4Cl (12.5 kcal/mol). Theoretical DFT calculations demonstrate the dramatic increase of X⋅⋅⋅Ncyano HaB strength for stacked trimers in comparison with parent unstacked haloarenes.  相似文献   

14.
A detailed theoretical study of the mechanism and energetics of an organocatalysis based on C?N activation by halogen‐bonding is presented for the hydrocyanation of N‐benzylidenemethylamine. The calculations at the level of scalar‐relativistic gradient‐corrected density functional theory give an insight in this catalytic concept and provide information on the characteristics of four different monodentate catalyst candidates acting as halogen‐bond donors during the reaction. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
16.
The structural characterization of molecular assemblies constructed from imidazolyl-containing haloalkenes and haloalkynes is reported. 1-(3-Iodopropargyl)imidazole (2) and 1-(2,3,3-triiodoallyl)imidazole (5) were synthesized from 1-propargylimidazole (1). In the solid state, these wholly organic modules self-assemble through N...I halogen-bonding interactions, thus giving rise to polymeric chains. The N...I interaction observed in 2 (d(N...I)=2.717 A, angle-spherical C(sp)-I...N=175.8 degrees) is quite strong relative to previously reported data. The N...I interaction in 5 (d(N...I)=2.901 A, angle-spherical C(sp2)-I...N=173.6 degrees) is weaker, in accordance with the order C(sp)-X<--base>C(sp2)-X<--base. Compound 5 was found to give a 1:1 cocrystal 4 with morpholinium iodide (6). In the X-ray crystal studies of 4, N...I halogen-bonding interactions similar to those observed in 5 were shown not to be present, as the arrangement of the molecules is governed by two interwoven hydrogen-bonding networks. The first network involves N-H...O interactions between nearby morpholinium cations, and the second network is based on N-H...N hydrogen bonding between morpholinium cations and imidazolyl groups. Both hydrogen-bonding schemes are charge-assisted. Halogen bonding is not completely wiped out, however, as the triiodoalkene fragment forms a halogen bond with an iodide anion in its vicinity (d(I...I)=3.470 A, angle-spherical C(sp2)-I...I=170.7 degrees). X-ray crystal studies of 6 show a completely different arrangement from that observed in 4, namely, N-H...O interactions are not present. In crystalline 6, morpholinium cations are interconnected through C-H...O bridges (d(H...O)=2.521 and 2.676 A), and the NH2+ groups interact with nearby iodide anions (d(H...I)=2.633 and 2.698 A).  相似文献   

17.
The magnetic properties of a series of three neutral radical organometallic complexes of general formula [CpNi(dithiolene)]. have been investigated by a combination of X-ray crystal structure analysis and magnetic susceptibility measurements, while the assignment of the exchange coupling constants to the possible exchange pathways has been accomplished with the help of calculations based on density functional theory (DFT). The syntheses and X-ray structures of [CpNi(adt)] (adt=acrylonitrile-2,3-dithiolate) and [CpNi(tfd)] (tfd=1,2-bis(trifluoromethyl)ethene-1,2-dithiolate) complexes are described, while [CpNi(mnt)] (mnt=maleonitriledithiolate) was reported earlier. In the three complexes, we observed strong antiferromagnetic coupling that could not be explained solely by short SS intermolecular contacts. Our calculations indicated that spin density in these complexes is strongly delocalized on the NiS2 moiety, with up to 20% on the Cp ring. As a consequence, CpCp and Cpdithiolene overlap interactions have been identified as responsible for antiferromagnetic couplings. The [CpNi(adt)] complex thus has a value J=-369.5 cm(-1) for an exchange interaction through a pi stacking due to the CpCp overlap.  相似文献   

18.
Halogen-bonding interactions in electron-deficient π scaffolds have largely been underexplored. Herein, the halogen-bonding properties of arylene imide/diimide-based electron-deficient scaffolds were studied. The influence of scaffold size, from small (phthalimide) to moderately sized (pyromellitic diimide or naphthalenediimides) to large (perylenediimide), axial-group modification, and number of halo substituents on the halogen bonding and its self-assembly was probed in a set of nine compounds. The structural modification leads to tunable optical and redox properties. The first reduction potential ranges between −1.09 and −0.17 V (vs. SCE). Two of the compounds, that is, 6 and 9 , have deep-lying LUMOs with values reaching −4.2 eV. Single crystals of all nine systems were obtained, which showed Br ⋅⋅⋅ O, Br ⋅⋅⋅ Br, or Br ⋅⋅⋅ π halogen-bonding interactions, and a few systems are capable of forming all three types. These interactions lead to halogen-bonded rings (up to 12-membered), which propagate to form stacked 1D, 2D, or corrugated sheets. A few outliers were also identified, for example, molecules that prefer C−H ⋅⋅⋅ O hydrogen bonding over halogen bonding, or noncentrosymmetric rather than centrosymmetric organization. Computational studies based on Atoms in Molecules and Natural Bond Orbital analysis provided further insight into the halogen-bonding interactions. This study can lead to a predictive design tool-box to further explore related systems on surfaces reinforced by these weak directional forces.  相似文献   

19.
Halogen bonding is often described as being driven predominantly by electrostatics, and thus adducts between anionic halogen bond (XB) donors (halogen‐based Lewis acids) and anions seem counterintuitive. Such “anti‐electrostatic” XBs have been predicted theoretically but for organic XB donors, there are currently no experimental examples except for a few cases of self‐association. Reported herein is the synthesis of two negatively charged organoiodine derivatives that form anti‐electrostatic XBs with anions. Even though the electrostatic potential is universally negative across the surface of both compounds, DFT calculations indicate kinetic stabilization of their halide complexes in the gas phase and particularly in solution. Experimentally, self‐association of the anionic XB donors was observed in solid‐state structures, resulting in dimers, trimers, and infinite chains. In addition, co‐crystals with halides were obtained, representing the first cases of halogen bonding between an organic anionic XB donor and a different anion. The bond lengths of all observed interactions are 14–21 % shorter than the sum of the van der Waals radii.  相似文献   

20.
A series of dimeric complexes formed between bromocarbon molecules and two anions (Br? and CN?) have been investigated by using MP2 method. The quantum theory of atoms in molecules (QTAIM) and the second‐order perturbation natural bond orbital (NBO) approaches were applied to analyze the electron density distributions of these complexes and to explore the nature of charge‐assisted halogen bonding interactions. As anticipated, these interactions are significantly stronger relative to the corresponding neutral ones. The results derived from ab initio calculations described herein reveal a major contribution from the electrostatic interaction on the stability of the systems considered. Beside the electrostatic interaction, the charge‐transfer force and the second‐order orbital interaction also play an important role in the formation of the complexes, as a NBO analysis suggested. The presence of halogen bonds in the complexes has been identified in terms of the QTAIM methodology, and several linear relationships have been established to provide more insight into charge‐assisted halogen bonding interactions. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号