首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The cytotoxicity that ensues following photosensitization by hematoporphyrin derivative (Hpd) is attributed to production of singlet oxygen. Many of the cellular end points reported to be affected are localized to membranes, hydrophobic environments conducive to partitioning of hydrophobic porphyrins in Hpd. In order to test the hypothesis that efficacy of Hpd-induced photosensitization is enhanced by its ability to freely enter cells or subcellular organelles, we immobilized Hpd on a sepharose support. This immobilized reagent was found to produce 1O2 when photoradiated, in yields similar to those observed for Hpd in solution, as evidenced by the bleaching of p -nitrosodimethylaniline in the presence of imidazole. The immobilized Hpd was capable of photosensitizing, i.e. inhibit, cytochrome c oxidase activity in intact mitochondrial membranes and in aqueous solution. However, enzymes located on the interior of mitochondrial membranes (F0F1 ATP synthase and succinate dehydrogenase), in the mitochondrial matrix (malate dehydrogenase), or on the inside of the plasma membrane, (Na++ K+)- ATPase, were unaffected by immobilized Hpd plus photoradiation compared to free Hpd. The results suggest that photosensitization by Hpd most likely arises from entry of the photosensitizer into the biological membrane, although proteins on the exterior membrane surface may be susceptible to damage by 1O2 produced in proximity to their location.  相似文献   

2.
Abstract— The binding of hematoporphyrin derivated (Hpd) to lipid vesicles and bacterial membranes was determined by fluorescence spectroscopy. The fluorescence measurements of Hpd in aqueous solutions showed two bands at 613 and 677 nm. In lipid environments of lecithin vesicles the fluorescence spectrum was shifted to 631 and 692 nm, respectively. Hpd was rapidly bound to the cell membrane of Staphylococcus aureus while much less binding occurred in the presence of Escherichia coli. At the same time, spheroplasts of both bacteria were shown to bind Hpd to a similar extent. These results are well correlated with the photoinactivation of the gram positive bacteria with Hpd while the gram negative cells were shown to be resistant. The pH dependence of both Hpd binding to S. aureus as well as the photodynamic inhibitory effect of the same bacteria are similar. It is concluded that the segregation of Hpd to the cell membrane is a prerequisite for its photodynamic effect.  相似文献   

3.
Hematoporphyrin as a photosensitizer of tumors   总被引:1,自引:0,他引:1  
Abstract— The ability of hematoporphyrin (Hp) to act as a photosensitizer of cells in vitro or in vivo is a matter of dispute, while hematoporphyrin derivative (Hpd), a mixture of porphyrins including hematoporphyrin, has been consistently found to be an effective photosensitizer both in vitro and in vivo. Until recently the actual component of the Hpd mixture responsible for these effects had not been identified. We have found that those preparations of Hp which contain, as an impurity, a porphyrin similar to that found to be responsible for the tumor photosensitizing ability of Hpd, may be effective photosensitizers of tumors but are generally of low efficacy. This material accounts for the entire photosensitizing activity of both Hp and Hpd in the SMT-F mammary carcinoma in DBA/2 HeHa mice.  相似文献   

4.
Abstract Porphyrins, which may be introduced into the eye as a result of abnormal porphyrin metabolism (uroporphyrin–Uro) or when used in the diagnosis or photodynamic therapy of certain tumors, including intraocular tumors (hematoporphyrin–Hp and'hematoporphyrin derivative'–Hpd and mesotetra( P -sulfonatophenyl)porphyrin–TPPS) are efficient photosensitizers in biological systems. We have been studying the potential phototoxic side effects of these drugs in the lens of the eye. Encapsulated in the human lens is a mixture of soluble protein crystallins. With little turnover of protein in the lens, any photosensitized modifications will accumulate and may result in an opacification of the lens. To evaluate the potential of different porphyrins to induce such damage, a series of porphyrins were photolyzed (transmission above 295 nm) in the presence of calf lens protein (2 mg m−1). Marked photopolymerization and histidine destruction were observed for the lens protein photolyzed in the presence of all of the drugs. We have found that the relative effectiveness of the following porphyrins to induce that damage is: Uro = TPPS Hpd = Hp. Both the singlet oxygen quencher, azide, and the free radical scavenger, penicillamine, decrease this photosensitized oxidative damage to lens protein. TPPS binds significantly to lens protein and this binding leads to conformational changes in that protein.  相似文献   

5.
6.
Tethered bilayer lipid membranes (tBLMs) are increasingly used to study biological membranes, membrane proteins and a variety of related topics. A tBLM is formed by binding a lipid bilayer to a metal surface (usually gold) via a hydrophilic tether (usually an ethyleneoxy chain). In this report we present an electrochemical study on ubiquinone in a tBLM which has provided insights into the properties of this hydrophilic layer, which has a very limited capability of storing and releasing protons. It is concluded that the often observed decrease in tBLM resistance upon addition of ionophores (or protonophores) could be due to the penetration of ions (or protons) into the membrane rather than transport through the membrane.  相似文献   

7.
Structure–activity relationships have been widely reported for porphyrin and phthalocyanine photosensitizers, but not for phenothiazinium derivatives. Here, four phenothiazinium salts (methylene blue, toluidine blue O, 1,9‐dimethyl methylene blue and the pentacyclic derivative DO15) were used to investigate how the ability to damage membranes is affected by membrane/solution partition, photophysical properties and tendency to aggregation of the photosensitizer. These two latter aspects were studied both in isotropic solutions and in membranes. Membrane damage was assessed by leakage of a fluorescent probe entrapped in liposomes and by generation of thiobarbituric acid‐reactive species (TBARS), while structural changes at the lipid bilayer were detected by small‐angle X‐ray scattering. We observed that all compounds had similar singlet‐oxygen quantum yields in ethanol, but only the photosensitizers that had higher membrane/solution partition (1,9‐dimethyl methylene blue and DO15, the latter having the higher value) could permeabilize the lipid bilayer. Moreover, of these two photosensitizers, only DO15 altered membrane structure, a result that was attributed to its destabilization of higher order aggregates, generation of higher amounts of singlet oxygen within the membranes and effective electron‐transfer reaction within its dimers. We concluded that membrane‐based protocols can provide a better insight on the photodynamic efficiency of the photosensitizer.  相似文献   

8.
结合聚苯乙烯球刻蚀和微机电系统技术加工氮化硅纳米多孔膜, 并在其上用囊泡法制备非支撑磷脂双层膜, 通过温控原子力显微术(AFM)的成像模式和力曲线模式对非支撑磷脂双层膜的形貌和力学性质进行研究. 实验结果表明, 该方法制备的非支撑磷脂双层膜具有流动性, 能进行自我修复, 该特点有利于提供足够的非支撑磷脂双层膜区域用于其性质研究; 非支撑磷脂双层膜的膜破力和粘滞力均随着温度的升高而减小, 即膜的机械稳定性随着温度的升高而降低. 非支撑磷脂双层膜膜破力小于支撑磷脂双层膜的膜破力, 并且非支撑磷脂双层膜粘滞力随温度的变化趋势与支撑磷脂双层膜的变化趋势相反.  相似文献   

9.
We have compared the photodynamic activities of hematoporphyrin (HP) and protoporphyrin (PP) on isolated rat liver mitochondria by measuring the decline of the respiratory control ratio (RCR) after irradiation at 365 nm. Before addition to the respiratory mcdium, the dyes were dissolved in phosphate-buffered saline (PBS) or incorporated into unilamellar liposomes of dipalmitoyl-phosphatidylcholine (DPPC), sometimes enriched with cholesterol (Chol) or cardiolipin (Card), which are naturally present in mitochondrial membranes. Chol and especially Card strongly increase the porphyrin uptake by mitochondria. In all experimental conditions, PP is taken up by mitochondria to a higher extent than HP. Nevertheless, under conditions giving the same amount of mitochondriabound dye, HP is a morc efficient photosensitizer than PP. As the efficiency of singlet oxygen production has been shown to be equivalent for the two porphyrins in monomeric state, the resulting photobiological effects are explained in terms of different localization of HP and PP in the mitochondrial membrancs. In particular, HP preferentially localizes in the protein-rich polar domains of the inner mitochondrial membrane, whereas PP dissolvcs in the lipid regions of the mcmbrancs.  相似文献   

10.
Tin(IV) etiopurpurin dichloride (SnET2 x 2Cl) is a photosensitizer which has been shown to be an effective photodynamic agent for the treatment of transplantable animal tumors in vivo. The purpose of this study was to understand the effect of SnET2 x 2Cl on membrane lipid peroxidation. When erythrocyte membranes were exposed to visible light in the presence of SnET2 x 2Cl, lipid peroxidation was observed. An accumulation of lipid hydroperoxides and an increase in lipid fluorescence were also observed. Thin layer chromatography of lipid extracts from photooxidized membrane revealed photoperoxide products derived from phospholipid. Investigations into the mechanism(s) of lipid peroxidation by SnET2 x 2Cl and light-sensitized membranes were also performed. Results indicate that singlet oxygen (1O2) plays a major role in lipid peroxidation.  相似文献   

11.
The incorporation of proto-, uro- and hematoporphyrin in low density lipoproteins (LDL) of human blood has been studied by equilibrium dialysis, fluorescence and absorption spectroscopy. The lipoproteins may efficiently compete with albumin in the binding of protoporphyrin to human blood proteins in patients suffering from protoporphyria. It can be concluded that hydrophobic porphyrins bind to blood proteins.
The complexation of hydrophobic porphyrins in LDL is responsible not only for efficient photodynamic effect at the lipoprotein level, but also for photoinduced lipid peroxidation and for consumption of β-carotene incorporated into LDL which are one of their natural carriers. The water-soluble uroporphyrin, although an efficient photosensitizer for the LDL apoprotein photoinactivation, is much less efficient for lipid peroxidation and β-carotene bleaching. The 353 nm laser flash photolysis shows that porphyrin triplet states are not affected by the physiological β-carotene content of LDL but are fully accessible to oxygen.  相似文献   

12.
There is evidence indicating that the cellular locus of PDT action by amphiphilic sensitizers are the cellular membranes. The photosensitization process causes oxidative damage to membrane components that can result in the cell's death. However, it was not yet established whether lipid oxidation can cause free passage of molecules through the membrane and, as a result, be the primary cause of the cell's death. In this work, we studied the effect of liposomes' lipid composition on the kinetics of the leakage of three fluorescent dyes, calcein, carboxyfluorescein and DTAF, which were trapped in the intraliposomal aqueous phase, after photosensitization with the photosensitizer deuteroporphyrin. We found that as the degree of fatty acid unsaturation increased, the photosensitized passage of these molecules through the lipid bilayer increased. We also found that the rate of leakage of these molecules was affected by their size and bulkiness as well as by their net electric charge. In liposomes that are composed of a lipid mixture similar to that of natural membranes, the observed passage of molecules through the membrane is slow. Thus, the photodynamic damage to lipids does not appear to be severe enough to be an immediate, primary cause of cell death in biological photosensitization.  相似文献   

13.
The lipid bilayer is widely accepted as the basic structure of all biological membranes. Known as BLM (bilayer lipid membrane), it can be prepared artificially. Suitably modified, the BLM serves as a very appropriate model for biological membranes. Recent investigations have verified the high analytical potential of artificial lipid membranes. With a structure and composition almost identical to the lipid moiety of biomembranes, the BLM may serve as an ideal host for receptor molecules of biological origin, thus becoming a transducer which could “see” the environment the way the living cell does. For the construction of lipid bilayer based biosensors; however, stable, easy to prepare and long-lasting lipid membranes are required. With this aim in mind, we have prepared lipid bilayer membranes which use an agar gel as support. This as-BLM (agar-supported BLM) has been shown to possess the same electrical, mechanical and dynamic properties the conventional BLM is famous for, along with the benefits of long-term stability and considerably elevated breakdown voltages. Its preparation on the tip of an agar-filled Teflon tube of 0.5 mm diameter is easy and can be performed even by less-skilled personnel.

In an attempt of further miniaturization the concept of the as-BLM was applied to thin-film micro-systems manufactured by standard micro-electronic techniques. The result is a lipid bilayer system, which, while preserving all the essential properties of the bilayer lipid membrane, can serve as a basic building block for cheap, disposable biosensoric systems.  相似文献   


14.
Membrane proteins are some of the most sophisticated molecules found in nature. These molecules have extraordinary recognition properties; hence, they represent a vast source of specialized materials with potential uses in sensing and screening applications. However, the strict requirement of the native lipid environment to preserve their structure and functionality presents an impediment in building biofunctional materials from these molecules. In general, the purification protocols remove the native lipid support structures found in the cellular environment that stabilize the membrane proteins. Furthermore, the membrane protein structure is often highly complex, typified by large, multisubunit complexes that not only span the lipid bilayer but also contain large (>2 nm) cytoplasmic and extracellular domains that protrude from the membrane. The present study is focused on using a biomimetic approach to build a stable, fluid microenvironment to be used to incorporate larger membrane proteins of interest into a tether-supported lipid bilayer membrane adequately spaced above a substrate passivated to liposome fusion and nonspecific adsorption. Our aim is to reintroduce the supporting structures of the native cell membrane using self-assembled supramolecular complexes constructed on microspheres in an artificial cytoskeleton motif. Central to our architecture is to utilize bacteriorhodopsin (bR), a transmembrane protein, as a biomembrane anchoring molecule to be tethered to surfaces of interest as a sparse structural element in the design. Compared to a typical lipid tether, which inserts into one leaflet of the lipid bilayer, bR anchoring provides an over 8-fold greater hydrophobic surface area in contact with the bilayer. In the work presented here, the silica microsphere surface was biofunctionalized with streptavidin to make it a suitable supporting interface. This was achieved by self-assembly of (p-aminophenyl)trimethoxysilane on the silica surface followed by subsequent conjugation of biotin-PEG3400 (PEG = poly(ethylene glycol) and PEG2000 for further passivation and the binding of streptavidin. We have conjugated bR with biotin-PEG3400 through amine-based coupling to use it as a tether. The biotin-PEG-bR conjugate was further labeled with Texas Red to facilitate localization via fluorescence imaging. Confocal microscopy was utilized to analyze the microsphere surface at different stages of surface modification by employing fluorescent staining techniques. Sparely tethered supported lipid bilayer membranes were constructed successfully on streptavidin-functionalized silica particles (5 mum) using a detergent-based method in which tethered bR nucleates self-assembly of the bilayer membrane. The fluidity of the supported membranes was analyzed using fluorescence recovery after photobleaching in confocal imaging detection mode. The phospholipid diffusion coefficients obtained from these studies indicated that nativelike fluidity was achieved in the tether-supported membranes, thus providing a prospective microenvironment for insertion of membrane proteins of interest.  相似文献   

15.
In this paper the phenomenon of inorganic substances deposited onto the bilayer lipid membrane is described. Metallic copper and semiconducting compounds such as CuS, FeS, CdS and also AgBr were deposited onto the bilayer lipid membrane. The cyclic voltammetry technique was used for determining electrochemical and photoelectrical properties of coated membranes. Considerable increase of stability and drastic changes of membrane properties were observed. Also investigated were the photoelectrical properties of bilayer lipid membrane with dispersed CdSe or AgBr particles in the absence and presence of pigments.  相似文献   

16.
Abstract— Human cells of the line NHIK 3025 were exposed to hematoporphyrin derivative (Hpd) and light and analysed with respect to; (i) the mobility of membrane proteins as determined by electron spin resonance measurements of a protein-bound spin label, (ii) fluorescence excitation spectra, (iii) relative number of DTNB-reactive SH-groups on their surface and in sonicated cell homogenates, (iv) survival, and (v) morphologic appearance as seen by ordinary phase contrast microscopy. A significant fraction of the porphyrins bound to the outer cell membrane was in close contact with proteins. 5,5'-Dithiobis-2-nitrobenzoic acid reactive SH-groups on the outer cell membrane were very sensitive to the treatment with Hpd + light and were degraded according to non-exponential kinetics. When the cells were irradiated after spin labelling, the labelled proteins became less mobile during the irradiation, indicating protein cross linking. Irradiation before spinlabelling resulted in a selective degradation of low-mobility proteins.  相似文献   

17.
Abstract— The absorption and fluorescence spectroscopy of natural and model bilayer lipid membranes is reviewed. Basic structural features of biological membranes and the relative advantages of black lipid membranes (BLM) and of liposomes are discussed. Theoretical considerations show that the wavelengths of absorption maxima are affected by the refractive index and dielectric constant of the medium surrounding the chromophore. Techniques of obtaining photoelectric action spectra, direct absorption spectra, and reflection spectra of BLM are described. Polarized spectra can give information about the orientation of membrane constituents and show, for example, that the porphyrin ring of chlorophyll in BLM is tilted at 45 ± 5° to the membrane surface. Absorption maxima of chlorophyll in BLM are compared with solution spectra of various chlorophyll adducts and aggregates. It is concluded that chlorophyll in BLM exists largely as solvated monomer and dimer (or oligomer), depending on concentration, and is not coordinated with water. From the theory of fluorescence spectroscopy it follows that aggregation and the polarity of the environment affect the fluorescence yield and lifetime of a membrane component, and also the wavelength of its emission maximum. The microviscosity of the membrane matrix affects the anisotropy of fluorescence. Techniques of steady-state fluorescence spectroscopy and of fluorescence lifetime measurements are reviewed. Examples of the use of fluorescent probes in membrane studies are given. Certain probes such as anilinonaphthalene sulfonate (ANS) preferentially bind to membrane proteins. The location of a probe in a particular membrane region can be pinpointed from its fluorescence yield and emission maximum. The orientation of the hydrocarbon chains of membrane lipids has been found, from fluorescence polarization of certain probes, to be normal to the membrane surface as postulated a priori on the basis of the lipid bilayer model. Anisotropy of fluorescence shows that elongated probe molecules rotate rapidly about their long axes when surrounded by phospholipids but become immobilized when bound to proteins. Changes in intensity and anisotropy of fluorescence as function of temperature have demonstrated the existence of phase transitions and phase equilibria of membrane lipids. Excimer fluorescence has been used as a measure of the available lipid core volume of membranes. Mechanisms of energy transfer between membrane components are reviewed. The theoretical dependence of energy transfer on distance and orientation for several rigid and fluid membrane models is discussed in terms of the structural information it can provide. Fluorescence sensitization resulting from energy transfer within and across bilayer membranes has been demonstrated in various systems. Quantitative measurement of energy transfer efficiency in BLM has shown that such transfer is about five times more efficient than in solutions at comparable donor-acceptor distances. Lipid membranes can be viewed as structures which maintain their components at high concentrations, in a reactive state, and at favourable orientations.  相似文献   

18.
The spectral properties and efficiency for photosensitizing the lysis of phosphatidylcholine liposomes have been measured for the components of hematoporphyrin derivative (Hpd) after alkaline hydrolysis and fractionation by polyacrylamidc gel chromatography. Two major and two minor Hpd fractions have been identified whose spectral properties correlate with the anoxic sensitizing efficiency and the oxygen enhancement ratio (OER). The fastest moving fraction, which is the putative biologically active component, comprised one-third of the starting material and had OER = 2.7. Liposome lysis by this fraction was inhibited in the presence of human serum albumin at concentration ratios comparable to those employed for photoradiation therapy. The present results show that Hpd can act as an oxic and anoxic photosensitizer of a model biomembrane and suggest that separation from serum proteins is required for in vivo photosensitization.  相似文献   

19.
Electron spin-echo envelope modulation (ESEEM) spectroscopy of phospholipids spin-labeled systematically down the sn-2 chain was used to detect the penetration of water (D2O) into bilayer membranes of dipalmitoyl phosphatidylcholine with and without 50 mol % cholesterol. Three-pulse stimulated echoes allow the resolution of two superimposed 2H-ESEEM spectral components of different widths, for spin labels located in the upper part of the lipid chains. Quantum chemical calculations (DFT) and ESEEM simulations assign the broad spectral component to one or two D2O molecules that are directly hydrogen bonded to the N-O group of the spin label. Classical ESEEM simulations establish that the narrow spectral component arises from nonbonded water (D2O) molecules that are free in the hydrocarbon chain region of the bilayer membrane. The amplitudes of the broad 2H-ESEEM spectral component correlate directly with those of the narrow component for spin labels at different positions down the lipid chain, reflecting the local H-bonding equilibria. The D2O-ESEEM amplitudes decrease with position down the chain toward the bilayer center, displaying a sigmoidal dependence on position that is characteristic of transmembrane polarity profiles established by other less direct spin-labeling methods. The midpoint of the sigmoidal profile is shifted toward the membrane center for membranes without cholesterol, relative to those with cholesterol, and the D2O-ESEEM amplitude in the outer regions of the chain is greater in the presence of cholesterol than in its absence. For both membrane types, the D2O amplitude is almost vanishingly small at the bilayer center. The water-penetration profiles reverse correlate with the lipid-chain packing density, as reflected by 1H-ESEEM intensities from protons of the membrane matrix. An analysis of the H-bonding equilibria provides essential information on the binding of water molecules to H-bond acceptors within the hydrophobic interior of membranes. For membranes containing cholesterol, approximately 40% of the nitroxides in the region adjacent to the lipid headgroups are H bonded to water, of which ca. 15% are doubly H bonded. Corresponding H-bonded populations in membranes without cholesterol are ca. 20%, of which ca. 6% are doubly bonded.  相似文献   

20.
双层类脂膜及其在电化学生物传感器中的应用   总被引:11,自引:0,他引:11  
罗立强  杨秀荣 《分析化学》2000,28(9):1165-1171
详细评述了各种双层类脂膜包括传统的双层类脂膜(BLM)、固体载体支撑的自组双层类脂膜(s-BLM)、固体载体支撑的混合双层类脂膜(e-BLM)的制备方法和特性,比较了其优缺点。介绍了双层类脂膜在电化学生物传感器中的应用,并展望了发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号