首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Racemic 1,1′-methylene[(1RS,1′RS,3RS,3′RS,5RS,5′RS)-8-oxabicyclo[3.2.1]oct-6-en-3-ol] ((±)-6) derived from 2,2′-methylenedifuran has been resolved kinetically with Candida cyclindracea lipase-catalysed transesterification giving 1,1′-methylenedi[(1R,1′R,3R,3′R,5R,5′R)-8-oxabicyclo[3.2.1]oct-6-en-3-ol] (−)-6 (30% yield, 98% ee) and 1,1′-methylenedi[(1S,1′S,3S,3′S,5S,5′S)-8-oxabicyclo[3.2.1]oct-6-en-3-yl] diacetate (+)-8, (40% yield, 98% ee). These compounds have been converted into 1,1′-methylenedi[(4S,4′S,6S,6′S)- and (4R,4′R,6R,6′R)-cyclohept-1-en-4,6-diyl] derivatives.  相似文献   

2.
Described herein is a versatile approach to (i) (2S,3S,4S)-3-hydroxy-4-methylproline 3, a constituent of echinocandins and related oligopeptide antibiotics; (ii) (2S,3S)-3-hydroxyproline 1; (iii) (2R,3S)-3-hydroxyprolinol 5, and (iv) 4′-tert-butoxyamido-2′-deoxythymidine 6b. The method features a stepwise regio- and diastereoselective reductive furylation of the protected (3S,4S)-4-methylmalimide 10, (S)-malimide 9, and a chemoselective oxidative transformation of the furyl group to the carboxyl group as the key steps.  相似文献   

3.
Vinyl substituted (1R,2S)-amino alcohols 5 were obtained by addition of vinyl magnesium bromide to the corresponding cyanohydrin O-trimethylsilyl ethers (R)-2. The O- and N-protected vinyl amino alcohols 6 were ozonized at −78°C in methanol yielding (1R,2S)-2-amino-1,3-diols7 in high enantiomeric and diastereomeric excesses. For purification, compounds 7 in some cases were acetylated to give the derivatives (1R,2S)-8. Racemic 6a was converted by oxidative ozonolysis at −78°C in methanolic NaOH solution to the corresponding methyl N-acetyl-β-hydroxy propanoate 9a. The configuration of (1R,2S)-8a was confirmed by x-ray crystallographic analysis.  相似文献   

4.
Diastereomeric mixtures of the palladium, the platinum, and the rhodium complexes were prepared from [P(R,S),3R,4R,P′(R,S)]-3,4-bis(phenylphosphino)pyrrolidine (1a). The phosphorus atoms in bis[(P(R,S),3R,4R,P′(R,S))-1-(t-butoxycarbonyl)-3,4-bis(phenylphosphino)pyrrolidine-P,P′]dihalogenopalladium (2) can be alkylated stereoselectively with iodomethane. The P---H bonds in 2 open epoxides, and add to Michael systems, to give new ligands, which can be split off from the palladium with cyanide. The three isomerically pure [(PR,3R,4R,P′R)(PS,3R,4R,P′S)(PR,3R,4R,P′S)]-1-(t-butoxycarbonyl)-3,4- bis[(2-cyanoethyl)phenylphosphino]pyrrolidines were prepared via the neutral diiodopalladium complexes. [(PS,3R,4R,P′S)1-(t-butoxycarbonyl)-3,4-bis[(2-cyanoethyl)phenylphosphino]pyrrolidine-P,P′]diiodopalladium(II) (14-1) was characterised by X-ray crystallography.  相似文献   

5.
The “naked sugar” (+)-(1R,2R,4R)-2-cyano-7-oxabicyclo[2.2.1]hept-5-en-2-exo-yl acetate ((+)-3) was converted in ten synthetic steps into the new C-nucleoside (1R)-1-C-(6′-amino-7′H-purin-8′-yl)-1,4-anhydro-3-azido-2,3-dideoxy- D-erythro-pentitol ((+)-2) in 19% overall yield.  相似文献   

6.
Several (3S,4S)- and (3S,4R)-statine derivatives have been prepared by attack of nucleophiles on crystalline, epimeric N-BOC-lactams 7a and 7b. The key step in the synthesis of the lactams was the TiCl4-catalyzed coupling reactions of acetals derived from (R)-1,3-butanediol with allyltrimethylsilane.

Several enantiometrically pure (3S,4S- and (3S, 4R)-statine derivatives were made by sodium cyanide-catalyzed reaction of nucleophiles with the lactams 3a and 3b which were synthesized by the scheme 1 → 2 → 3.  相似文献   


7.
3-exo,3′-exo-(1R,1′R)-bicamphor (12) is obtained from 3-exo,3′-exo-(1R,1′R)-bithtiocamphor (3) by condensation with hydrazine hydrate followed by hydrolysis of the resulting dihydropyridazine 11. Deprotonation of 12 with NaH and subsequent treatment with potassium hexacyanoferrate (III) furnishes the 2,2′-dioxo-3,3′-bibornanylidene 13, whilst reduction of 12 with L1AlH4 affords the 3,3′-biisoborneol 16. Further related transformations to various 2,2′-difunctional 3,3′-bibornane derivatives are described, which are could be of interest as chiral ligands  相似文献   

8.
The diastereoselective addition of allylsilanes and allylstannanes to N-glyoxyloyl-(2R)-bornane-10,2-sultam 1 and (1R)-8-phenylmenthyl glyoxylate 7 in the presence of Lewis acids has been studied. We obtained diastereoselectivities up to 84% and 94% for the allylation of 2 and 7, respectively. The application of the allylation products of 1 or 2 in the synthesis of 4-butanolides, for example (2S,4S)-2-hydroxy-4-hydroxymethyl-4-butanolide 13 is presented.  相似文献   

9.
Synthesis of (2R,3S,4S)-4-aryl-3-hydroxyprolinols has been established starting from 2-benzyloxymethylpyrrolidin-2-one framework, which is derived from commercially available trans-(2S,4R)-4-hydroxyproline. The single diastereomer having a trans–cis relative configuration with C2 and C3 and C3 and C4 is constructed in two one-pot functional group transformations of Grignard addition/dehydration and epoxidation/isomerization as the key steps in moderate yield.  相似文献   

10.
The first total synthesis of (3S,4S,5S,6R)-5-benzyloxy-6-hydroxy-3,4-(isopropylidendioxy)-cyclohex-1-enecarbaldehyde from d-glucose is described. The key steps of this synthesis are the stereoselective Michael addition of 2-lithio-1,3-dithiane to 3-O-benzyl-5,6-dideoxy-1,2-O-isopropylidene-6-nitro--d-xilo-hex-5-enofuranose followed by the enantioselective two-step transformation of 3-O-benzyl-5,6-dideoxy-5-C-(1,3-dithian-2-yl)-6-nitro-β-l-idofuranose into (1S,2S,3S,4S,5S,6R)-5-benzyloxy-6-hydroxy-3,4-(isopropylidendioxy)-2-nitro-cyclohexanecarbaldehyde propylene dithioacetal, which was finally converted into the target compound.  相似文献   

11.
The enantioselective hydrolysis of (3RS,4RS)-trans-4-(4′-fluorophenyl)-6-oxo-piperidin-3-ethyl carboxylate (±)-2 was effected using a commercial preparation of lipase from C. antarctica A (CAL-A). We found that the hydrolytic activity of the lipase (immobilized on a number of very different supports) with this substrate was negligible. However, a contaminant esterase with Mw of 52 KDa from this commercial preparation exhibited much higher activity with (±)-2. This enzyme was purified and immobilized on PEI-coated support and the resulting enzyme preparation was highly enantioselective in the hydrolysis of (±)-2 (E >100), hydrolyzing only the (3S,4R)-(−)-3, which is a useful intermediate for the synthesis of pharmaceutically important (−)-paroxetine. Optimization of the reaction system was performed using a racemic mixture with a substrate concentration of 50 mM. This enzyme preparation was used in three reaction cycles and maintained its catalytic properties.  相似文献   

12.
The enantiomers of Georgywood® were synthesized from (E)-2-methyl-6-methylene-nona-2,7-diene and methacrylaldehyde followed by oxidation of the Diels–Alder adduct and classical racemate separation of the acid with optically-active N-methylephedrine. Conversion to the final ketone and olfactory evaluation showed that the (−)-(1R,2S)-enantiomer is more powerful by a factor of >100 than its antipode. The absolute configuration was determined by conformational studies and CD-analysis.  相似文献   

13.
On the basis of the chiral syntheses of (1′R)-I and (1′S)-I and of their 9-ribosides (1″R)-III and (1″S)-III from D- and L-alanines, the structures of the cytokinins 1′-methylzeatin and its 9-riboside have been established to be (1′R)-I and (1″R)-III.  相似文献   

14.
The chiral bis-imine (1R,2R)-C6H10-[E---N=CH---C6H3---3,4-(OMe)2]2 1 (LH) reacts with [Pd(OAc)2] (1:1 molar ratio; OAc=acetate) giving the orthometallated [Pd(OAc)(C6H2---4,5-(OMe)2---2-CH=N-(1R,2R)-C6H10---N=CH---C6H3-3′,4′-(OMe)2-κ-C,N,N)] 2 (abbreviated as [Pd(OAc)(L-κ-C,N,N)]), through C---H bond activation on only one of the aryl rings and N,N-coordination of the two iminic N atoms. 2 reacts with an excess of LiCl to give [Pd(Cl)(L-κ-C,N,N)] 3. The reaction of 3 with AgClO4 and neutral or anionic ligands L′ (1:1:1 molar ratio) affords [Pd(L-κ-C,N,N)(L′)](ClO4) (L′=PPh3 4a, NCMe 5, pyridine 6, p-nitroaniline 7) or [Pd(I)(L-κ-C,N,N)] 8. Complex 4a reacts with wet CDCl3 giving [Pd(C6H2---4,5-(OMe)2---2-CH=N-(1R,2R)---C6H10---NH2-κ-C,N,N)(PPh3)](ClO4) 4b as a result of the hydrolysis of the C=N bond not involved in the orthometallated ring. The molecular structure of 4b·CH2Cl2 has been determined by X-ray diffraction methods. Cleavage of the Pd---N bond trans to the Caryl atom can be accomplished by coordination of strongly chelating ligands, such as acetylacetonate (acac) or bis(diphenylphosphino)ethane (dppe), forming [Pd(acac-O,O′)(L-κ-C,N)] 9 and [Pd(L-κ-C,N)(dppe-P,P′)](ClO4) 12, while classical N,N′-chelating ligands such as 1,10-phenantroline (phen) or 2,2′-bipyridyl (bipy) behave as monodentate N-donor ligands yielding [Pd(L-κ-C,N,N)(κ1-N-phen)](ClO4) 10 and [Pd(L-κ-C,N,N)(κ1-N-bipy)](ClO4) 11. Treatment of 1 with PtCl2(DMSO)2 (1:1 molar ratio) in refluxing 2-methoxyethanol gives Cl2Pt[(NH2)2C6H10---N,N′] 13a and [Pt(Cl)(C6H2---4,5-(OMe)2---2-CH=N-(1R,2R)---C6H10---NH2-κ-C,N,N)] 13b, while [Pt(Cl)(L-κ-C,N,N)] 14 can be obtained by reaction of [Pt(μ-Cl)(η3-2-Me---C3H4)]2 with 1 in refluxing CHCl3. Complexes 2 and 3 catalyzed the arylation of methyl acrylate giving good yields of the corresponding methyl cinnamates and TON up to 847 000. Complex 3 also catalyzes the hydroarylation of 2-norbornene, but with lower yields and without enantioselectivity.  相似文献   

15.
The optically active indenyl complexes ((η5-C9H7)Ru(L---L)Cl (where L---L is either (S,S)-1,2-dimethyl-1,2-ethanediylbis(diphenylphosphine) (chiraphos) or (R,R)-1,2-cyclopentanediylbis(diphenylphosphine) (cypenphos)) have been synthesized and spectroscopically characterized and compared with the corresponding cyclopentadienyl complexes. Reaction of the new complexes with 2-e-donors give cationic adducts in which the pentahaptocoordination of the indenyl ligand is maintained. The crystal structures of (S,S)-(η5-C9H7)Ru{Ph2PCH(CH3)CH(CH3)PPh2}Cl (1) and (S,S)-η5-C5H5Ru{Ph2PCH(CH3)CH(CH3)PPh2}Cl (3) have been determined.  相似文献   

16.
β-Adrenoreceptor agonists (R)-(−)-denopamine (R)-1 and (R)-(−)-salmeterol (R)-2 have been prepared in good overall yield and high enantioselectivity through a biotransformative pathway.  相似文献   

17.
A biphasic catalytic system with water-soluble rhodium complexes of sulfonated (R)-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (labeled as (R)-BINAPS) in ionic liquid BMI·BF4 has been developed for the asymmetric hydroformylation of vinyl acetate under mild conditions. The corresponding ruthenium complexes have been investigated for the biphasic asymmetric hydrogenation of dimethyl itaconate. The biphasic asymmetric hydroformylation of vinyl acetate provided 28.2% conversion and 55.2% enantiomeric excess when BMI·BF4–toluene was used as the reaction medium at 333 K and 1.0 MPa for 24 h. The biphasic asymmetric hydrogenation of dimethyl itaconate in BMI·BF4iPrOH at 333 K and 2.0 MPa afforded 65% enantiomeric excess with an activity similar to the homogenous analogs. Both biphasic catalytic systems with (R)-BINAPS ligand could be reused several times without significantly decrease in the activity, enantio- and regio-selectivities. The effects of properties of ionic liquid, molar ratio of ligand to rhodium, temperature, pressure and reaction time have been discussed.  相似文献   

18.
Acid-catalyzed condensation of (+)-mollisacacidin-[(2R, 3S, 4R)-2, 3-trans-3, 4-trans-flavan-3,3′,4,4′,7-pentaol] with an excess of (−)-robinetinidol[(2R,3S)-2,3-trans-flavan-3,3′,4′,5′,7-pentaol] afforded a novel series of bi-, tri-, and tetraflavanoid profisetinidins. They are accompanied by (−)-fisetinidol-(4,2′)-(−)-robinetinidol which results from the pyrogallol B-ring of (−)-robinetinidol serving as nucleophile competing with its resorcinol A-ring in coupling with a C-4 carbocationic intermediate. Similar condensation with (+)-epifisetinidol[(2S,3S)-2,3-cis-flavan-3,3′,4′,7-tetraol] led to the exclusive formation of [4,6]-interflavanyl bonds, these units being ‘linearly’ arranged in the tetraflavanoid analogue in contrast to the ‘branched’ nature of the (−)-robinetinidol homologue.  相似文献   

19.
Enantiopure 1,1′-binaphthyl-2,2′-dicarboxylic acids (R)-1 and (S)-1 have been synthesized through the lipase-catalyzed kinetic resolution of the racemic 2,2-bis(hydroxymethyl)-1,1′-binaphthyl (±)-2 and subsequent oxidation of the hydroxymethyl groups.  相似文献   

20.
Asymmetric hydroboration of [E]- and [Z]-2-methoxy-2-butene, using (−)-diisopinocampheylborane at −25°C in THF solvent, followed by oxidation using H2O2/NaOH, gave (−)-[2R,3R]- and (+)-[2R,3S]-3-methoxy-2-butanols in >97 and 90% ee, respectively. (−)-[2R,3R]-3-Methoxy-2-butanol was converted to (−)-[2R,3R]-butane-2,3-diol (>97% ee, in an overall yield of 65%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号