首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular imprinting inside dendrimers   总被引:1,自引:0,他引:1  
Synthetic hosts capable of binding porphyrins have been produced by a mixed-covalent-noncovalent imprinting process wherein a single binding site is created within cross-linked dendrimers. Two synthetic hosts were prepared, using as templates 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin and 5,10,15,20-tetrakis(3,5-dihydroxyphenyl)porphyrin. These two templates were esterified with, respectively, fourth- and third-generation Fréchet-type dendrons containing homoallyl end-groups. The resulting tetra- and octadendron macromolecules underwent the ring-closing metathesis reaction using Grubbs' Type I catalyst, RuCl(2)(P(C(6)H(5))(3))(2)(CHCH(2)C(6)H(5)), to give extensive interdendron cross-linking. Hydrolytic removal of the porphyrin cores afforded imprinted hosts whose ability to bind porphyrins with various peripheral substituents was investigated by UV-visible spectrophotometric titrations and size exclusion chromatography. The results indicate a high yield of imprinted sites that show high selectivity for binding of porphyrins capable of making at least four hydrogen bonds, but only a moderate degree of shape selectivity.  相似文献   

2.
Molecular imprinting made easy   总被引:4,自引:0,他引:4  
A simple method of molecular imprinting is presented that uses a single cross-linking monomer N,O-bismethacryloyl ethanolamine (NOBE) along with template, initiator, and solvent. This formulation eliminates the need for additional functional monomers and empirical optimization of relative ratios of functional monomers, cross-linkers, and template. In fact, utilization of NOBE alone often provides molecularly imprinted polymers (MIPs) with higher performance than MIPs incorporating functional monomer (e.g., methacrylic acid).  相似文献   

3.
Molecularly imprinted polymers (MIPs) are tailor-made synthetic polymers with a predetermined selectivity for a given analyte, or group of structurally related compounds, that make them ideal materials for use as stationary phases in affinity chromatography. However, extensive peak broadening and tailing, especially of the more retained compound (normally the template) are often observed. Thus, huge efforts have been made during recent years to use MIPs in capillary electrochromatography, which is inherently a more efficient chromatographic technique than conventional HPLC. Accordingly, this paper gives an overview of the attempts carried out in the recent past to improve the chromatographic performance of MIPs in capillary electrochromatography as well as more recent applications. It is concluded that MIPs are very promising materials for use as selective stationary phases in CEC.  相似文献   

4.
The aim of this study is the preparation of molecularly imprinted polymers by employing a redox pair as initiator system. Bulk molecularly imprinted polymers were synthesized by using Fenton reagents as initiator system. Theophylline, methacrylic acid, and ethylene glycol dimethacrylate were employed as model template, functional monomer, and crosslinking agent, respectively. Conventional imprinted polymers were also prepared by using 2,2′-azoisobutyronitrile in order to evaluate the efficiency of the proposed initiator system. Redox molecularly imprinted polymers and conventional molecularly imprinted polymers were characterized by water uptake measurement, while the imprinting effect of synthesized polymers were evaluated by performing binding experiments in organic (acetonitrile) and in water (buffered water solution at pH = 7.4) media.  相似文献   

5.
Molecular imprinting of two diolefinic compounds with solid-state photopolymerization, 2,5-distyrylpyrazine (DSP) and diethyl p-phenylenediacrylate (EPA), was demonstrated. Solid nanoscale particles of the monomer were produced and deposited onto the surface of a surface acoustic wave (SAW) transducer using the technique known as rapid expansion of supercritical solutions (RESS). The particles were polymerized by UV light in the presence of an alkane template vapor. Both imprinted and non-imprinted devices were tested upon exposure to a variety of alkane vapors in the gas phase. The results demonstrate an enhanced sensitivity to vapors at or below the size of the template. A size exclusion mechanism of recognition is proposed.  相似文献   

6.
7.
In this article,a novel strong interaction by forming complex between bovine serum albumin(BSA) and copper ion was utilized for the preparation of molecular imprinted hydrogel in aqueous solution.Results show that the inclusion of copper ion in preparation can bridge the template BSA and functional monomers together and improve the imprinting effect compared to the polymer made without copper ion added.High selectivity factor and large adsorption capacity are also observed for the obtained BSA-imprinted ...  相似文献   

8.
A new strategy of molecular imprinting to prepare spherical hydrogels via water-in-oil Pickering emulsion polymerization was developed. The imprinted hydrogels exhibited fast adsorption kinetics and significant selectivity for the target protein.  相似文献   

9.
Molecular imprinting technology is an attractive approach of creating recognition sites in polymeric materials by using the templating approach found in many natural systems. These recognition sites have memory to the target molecule that enables selective recognition of the template species. Molecularly imprinted polymers (MIPs) have been used in a wide range of areas including separation and isolation, catalysis, chemical sensing, and drug delivery. This review aims at highlight the recent advances in the application of molecular imprinting technology for inorganic and small organic anion recognition in aqueous media.
Figure
The application of molecular imprinting technology for anion recognition in aqueous media  相似文献   

10.
Molecular imprinting technology allows synthesis of polymers with specific recognition ability towards target pollutants, which show potential to selectively remove Highly Toxic Organic Pollutants (HTOPs) in the presence of common organic matrices that are thousands of times more abundant than the targets. This feature article summarizes the current development of molecular imprinting for removing HTOPs from polluted water, with a special emphasis on the application of molecularly imprinted polymers to improve the efficiency of photocatalytic and biological degradation of HTOPs in wastewater.  相似文献   

11.
Molecular imprinting has received significant attention in recent years, as it provides a viable method for creating synthetic receptors capable of selectively recognizing specific target molecules. Despite significant growth within the field, the majority of template molecules studied thus far have been characterized by their low molecular weight and insolubility in aqueous systems. In biological systems, molecular recognition events occur in aqueous media. Therefore, in order to create molecularly imprinted polymers capable of mimicking biological processes, it is necessary to synthesize artificial receptors which can selectively recognize their respective target biological macromolecules such as peptides and proteins in aqueous media. In this review, we discuss the challenges associated with the imprinting of peptides and proteins in aqueous media. In addition, we discuss the significant progress which has been made within the field.  相似文献   

12.
蛋白质分子印迹技术载体形式的研究进展   总被引:1,自引:0,他引:1  
现代生物技术产品分离成本很高,分子印迹技术以其优良的操作稳定性为蛋白质分离提纯提供了一种新的方法,合成蛋白质分子印迹聚合物具有巨大的应用价值,又极具挑战性,已成为各国科学工作者们研究的热点。本文对蛋白质分子印迹过程中使用的载体形式进行了综述,对不同形式载体的使用特点进行了总结,详细叙述了常见的载体形式如硅胶、合成树脂球、高分子膜、云母、凝胶以及一些新型的载体类似形式如环糊精和壳聚糖等,并探讨了目前蛋白质分子印迹技术存在的问题及其应用前景。  相似文献   

13.
Attaining higher levels of catalytic activity of enzymes in organic solvents is one of the major challenges in nonaqueous enzymology. One of the most successful strategies for enhancing enzyme activity in organic solvents involves tuning the enzyme active site by molecular imprinting with substrates or their analogues. Unfortunately, numerous imprinters of potential importance are poorly soluble in water, which significantly limits the utility of this method. In the present study, we have developed strategies that overcome this limitation of the molecular-imprinting technique and that thus expand its applicability beyond water-soluble ligands. The solubility problem can be addressed either by converting the ligands into a water-soluble form or by adding relatively high concentrations of organic cosolvents, such as tert-butyl alcohol and 1,4-dioxane, to increase their solubility in the lyophilization medium. We have succeeded in applying both of these strategies to produce imprinted thermolysin, subtilisin, and lipase TL possessing up to 26-fold higher catalytic activity in the acylation of paclitaxel and 17beta-estradiol compared to nonimprinted enzymes. Furthermore, we have demonstrated for the first time that molecular imprinting and salt activation, applied in combination, produce a strong additive activation effect (up to 110-fold), suggesting different mechanisms of action involved in these enzyme activation techniques.  相似文献   

14.
β-Cyclodextrin (β-CyD)-based polymeric receptors for γ-endorphin (γ-endor, an opioid heptadecapeptide) were prepared using the molecular imprinting method. When mono-3-(N-acrylamido)-3-deoxy-β-CyD bearing a vinyl group in the secondary hydroxyl side of the cavity of β-CyD was polymerised in water in the presence of γ-endor, the binding activity of the β-CyD polymer to this peptide in water was enormously promoted by the imprinting. By contrast, the bindings towards methionine–enkephalin (N-terminal pentapeptide of γ-endor) and its homologue leucine–enkephalin were suppressed. Thus, the binding of γ-endor by the imprinted polymer was highly selective. The imprinting towards γ-endor was also successful with the use of the β-CyD monomer bearing a vinyl group in the primary hydroxyl side of the cavity, although the recognition was less strict. Various factors affecting the imprinting efficiency (kinds of β-CyD vinyl monomer and template, as well as the pH of imprinting mixture) are discussed.  相似文献   

15.
A covalent interaction-based molecularly imprinted polymer (MIP) material for 3-chloro-1,2-propanediol (3-MCPD), a post-testicular anti-fertility agent and possible carcinogen and mutagen in food products containing acid-hydrolyzed vegetable proteins, has been successfully fabricated using 4-vinylphenylboronic acid as the functional monomer. Rebinding assay revealed that the binding constant, KB, for the receptor sites and non-specific sites are 1.93±0.1×104 and 2.74±0.7×102 M−1, respectively. The estimated number of receptor site, Bmax, imprinted is 123.3±3 μmol/g of MIP. The MIP material is able to act as a potentiometric chemosensor for 3-MCPD via increase in Lewis acidity of the receptor sites upon reaction of the arylboronic acid with 3-MCPD to form the more acidic arylboronic acid esters. A simple pH glass electrode is sufficient to monitor the analyte-specific rebinding. In unbuffered aqueous media, linear potentiometric response from 0 to 350 ppm of 3-MCPD can be achieved. The MIP-based chemosensing in a soya sauce matrix has also been attempted. It is found that the dynamic range of the potentiometric chemosensing response of the MIP material is much reduced, probably due to the blocking or deactivation of receptor sites by interferents in soya sauces. Nevertheless, the present work demonstrated the feasibility of using MIP-based chemosensors as semi-quantitative analytical tools for screening purposes in quality control of food products.  相似文献   

16.
This article gives the recent developments in molecular imprinting for proteins. Currently bio-macromolecules such as antibodies and enzymes are mainly employed for protein recognition purposes. However, such bio-macromolecules are sometimes difficult to find and/or produce, therefore, receptor-like synthetic materials such as protein-imprinted polymers have been intensively studied as substitutes for natural receptors. Recent advances in protein imprinting shown here demonstrate the possibility of this technique as a future technology of protein recognition.  相似文献   

17.
Recent progresses of molecular imprinting in metal oxide matrices were summarized. Application of the surface sol-gel process to mixtures of organic carboxylic acids and titanium alkoxide provides ultrathin layers of titania gel (10-20 nm thick), in which molecule-sized cavities are kept intact upon removal of the organic templates. The imprinted cavity reflects the structural and functional features of the template molecule, and the enantioselective imprinting of dipeptide isomers is observed. Robustness and flexibility of the ultrathin titania layer is demonstrated by the formation of interconnected titania hollow structures. Possible practical applications and unsolved problems of this technique are discussed.  相似文献   

18.
Continuous advances in analyzing complex matrices, improving reliability and simplicity, and performing multiple simultaneous assays with extreme sensitivity are increasing. Several techniques have been developed for the quantitative assays of analytes at low concentrations (e.g., high-pressure liquid chromatography, gas chromatography, immunoassay and the polymerase chain reaction technique). To achieve highly specific and sensitive analysis, high affinity, stable, and specific recognition agents are needed. Although biological recognition agents are very specific and sensitive they are labile and/or have a low density of binding sites. During the past decade molecular imprinting has emerged as an attractive and highly accepted tool for the development of artificial recognition agents. Molecular imprinting is achieved by the interaction, either noncovalent or covalent, between complementary groups in a template molecule and functional monomer units through polymerization or polycondensation. These molecularly imprinted polymers have been widely employed for diverse applications (e.g., in chromatographic separation, drug screening, chemosensors, catalysis, immunoassays etc.) owing to their specificity towards the target molecules and high stability against physicochemical perturbations. In this review the advantages, applications, and recent developments in molecular imprinting technology are highlighted.  相似文献   

19.
We report amphiphilic folded polymers with imprinted nanocavities for selective molecular recognition in water. For this, a molecular imprinting technique is applied to the polymer synthesis: amphiphilic polymer micelles interacting with template molecules are crosslinked in water to fix the folded architecture and memorize the template structure within the polymers; the removal of the templates provides imprint polymers bearing template-specific nanospaces. Here, a hydrophilic dye bearing two anionic groups, Orange G (OG), is used as a model template. For the imprinting, we design amphiphilic random copolymers bearing hydrophilic poly(ethylene glycol) (PEG) chains, hydrophobic olefin groups, and quaternary ammonium groups that can interact with the template. The copolymers were prepared by living radical polymerization and post functionalization. In the presence of OG and methyl blue (MB), the imprinted nanocavity polymers simultaneously capture both of the dyes in water. The total number of encapsulated dyes increased with increasing the number of polymer-bound quaternary ammonium groups. The selectivity of OG against MB increased with the crosslinking density, while imprint polymers encapsulated OG more efficiently than nonimprint polymers. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 215–224  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号