首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The present paper focuses on the characterisation of surface composition and alloying element in-depth distribution of water-atomised Al–Zn–Mg–Cu alloy powders by secondary ion mass-spectrometry and Auger electron spectroscopy. A pronounced segregation of Mg and some impurities (Fe, Ca, S) concurrently with some Zn depletion are observed on the powder surface. The oxide film formed on the powder surface mainly consists of Al and Mg oxides. The film is non-uniform in thickness: rather coarse surface oxide islands coexist with surface areas covered by a thin (<1.8 nm) oxide layer. The extent of surface oxidation is strongly affected by solidification conditions: The average thickness of the surface oxides increases with increasing particle size or with decreasing cooling rate. All alloying elements are homogeneously distributed in the bulk of individual particles. No significant differences in chemical composition between different particles of a given powder are observed. Received November 26, 1999. Revision September 25, 2001.  相似文献   

2.
 Sputtered (Ti,Al)N hard coatings are successfully used for dry high speed cutting. These films show a lower oxidation rate than TiN or TiC coatings. In our work (Ti,Al)N films were deposited on WC-6%Co substrates at a temperature of 490°C by plasma-assisted chemical vapour deposition (PACVD) using a gas mixture of TiCl4/AlCl3/N2/Ar/H2. Investigation of microstructure, crystalline structure and chemical composition was carried out using SEM, WDXS, TEM, AES and XRD techniques. The chemical composition of the deposited films showed a Al to Ti ratio of 1.33. The film thickness was 5.5 μm. Films showed a fine crystalline size, the metastable fcc crystal structure and a columnar growth. The film surface was under low compressive stress up to several 100 MPa. For (Ti,Al)N/WC-Co compounds the oxidation behaviour up to 1100°C (high temperature range) was studied. Therefore, samples were annealed or rapidly heated in air and under high vacuum condition using the laser shock method. The results show decomposition of the (Ti,Al)N structure to the TiN and the AlN phases at temperature values above 900°C. Heating in air causes growing of a thin aluminum oxide layer at the film surface, which is a barrier for further oxygen diffusion to the alumina-film boundary. Additionally, at temperatures above 900°C oxidation of the WC-6%Co substrate surface was obtained in regions of opened cracks and film delamination.  相似文献   

3.
 The distribution of the relevant elements within TiN coatings, made with two different physical deposition methods as the conventional dc vacuum arc method and the filtered high current pulsed arc method (Φ-HCA) are characterized and finally compared. Despite the rougher surface of the dc-arc produced TiN layer, which is due to accumulated droplets, there is no evidence of different stoechiometric composition of Ti and N on the surface. The interface of the dc-arc produced TiN layer (600 nm) is 10 times wider than the one made with the new filtered high current pulsed arc method (60 nm). However the TiN layer made by Φ-HCA shows an inhomogeneous distribution of aluminum and chlorine in the vertical direction, whereas the dc-arc sample is homogeneous. Furthermore, the TiN layer made by Φ-HCA shows vertically an obvious local maximum of chlorine at a depth of about 130 nm. This vertical local maximum has an homogeneous distribution in horizontal direction, which means that a thin, chlorine enriched layer has been incorporated inside the TiN layer. Nevertheless, quantification by SIMS shows that aluminum as well as chlorine concentrations of both samples are too low to influence any TiN properties. Received January 3, 2000. Revision April 4, 2000.  相似文献   

4.
 Compositional characterization of metal-DLC (metal-containing diamond-like carbon) hard coatings is carried out by (WDS)-EPMA and MCs+-SIMS. EPMA enables accurate (± 5% relative) quantitative analysis including minor concentrations (0.1–10 at%) of N, O and Ar. Under conditions of “near-surface” EPMA (E0 < 10 keV) the influence of surface oxide films on “pure” metal standards may be a limiting factor in respect of accuracy. Depth profiling of sufficiently “thick” layered structures (film thickness ≥ 2 μm) is carried out by EPMA-line scans along mechanically prepared bevels. The depth resolution is about 0.2 μm. SIMS in the MCs+-mode enables high resolution (< 20 nm) depth profiling of metal-DLC layered structures including the determination of H (1–20 at%). MCs+-SIMS, i.e. employing Cs+ primary ions and monitoring MCs+ molecular secondary ions (M is the element of interest) is presented as a promising route towards sufficiently accurate (10–20%) SIMS-quantification. Matrix-independent relative sensitivity factors for MCs+-SIMS are derived from homogeneous coating materials defined by EPMA. EPMA proves to be also useful to detect problems related to SIMS of Ar in metal-DLC materials. The combination EPMA-SIMS is demonstrated as an effective analytical strategy for quality control in industrial production and to support the development of metal DLC layered structures with optimum tribological properties.  相似文献   

5.
The influence of dipping temperature and time on the surface chemistry of hot‐dipped galvanized steel sheets during the alkaline degreasing process is investigated. The surface chemistry was monitored with scanning Auger electron spectroscopy (AES), X‐ray photoelectron spectroscopy (XPS), and time‐of‐flight secondary ion mass spectroscopy (ToF‐SIMS). The results show high Al concentrations on the untreated surfaces, which are significantly reduced during alkaline degreasing. The same conclusions could be drawn for the carbon compounds that accumulate on the surface during storage. The measurements reveal a gradual reduction in surface Al as the alkali solution temperature and/or degreasing time are increased. When degreasing was conducted at 70 °C for 30 s the surface was practically free from Al, which was present only in small islands. Furthermore, the experiments showed that the thickness of the oxide film covering the surfaces before and after alkaline degreasing is approximately 20 Å. The main constituents of the film varied from ZnAl hydroxide/oxide to Zn hydroxide/oxide, before and after degreasing, respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Low amounts of oxygen in AlCrN hard coatings have been quantitatively analysed by means of WDS–EPMA. By combination with SIMS depth profiling, applying a calibration sample produced by ion implantation, the accuracy of the EPMA results was proven. Values as low as 0.07 at% were measured and the calculated detection limit is in the range of 0.01 at%.  相似文献   

7.
The protectivity of aluminum and its alloys with transition metals   总被引:1,自引:0,他引:1  
The mechanism of the protectivity of aluminum and supersaturated aluminum alloys containing W, Mo, Ta and Cu has been investigated in chloride environments. The potential of zero charge (PZC) of the passive film was evaluated by a method based on impedance spectroscopy. The chloride ion adsorption on the passive film was measured by means of an in situ radiotracer technique. Constituents of the passive film as a function of depth were investigated by means of ex situ spectroscopic techniques including XPS, ISS and SIMS. The PZCs of the passive films of Al and Al alloys were calculated from the flatband potentials. A linear correlation between pitting potential and the PZC was found. Adsorption of the chloride ion on the Al-Ta surface starts at more anodic potentials than those of pure Al, and this shift is in agreement with the anodic shift of the PZC. A constant surface concentration of chloride ion was observed during the induction time for breakdown. A significant de crease of OH concentration in the passive film of Al and its alloys has been found after the passive film has undergone breakdown. The mole fraction of the alloying elements in the surface region of the passive film is ca. 1–8%. The adsorption of the chloride ion on the surface of the passive film is influenced by the anodic PZC shift, which varies with the alloying element. However, retardation of the chloride penetration into the passive film by blocking of the entry site by oxide ions of the alloying element controls the rate of breakdown. Received: 18 November 1996 / Accepted: 17 February 1996  相似文献   

8.
Nanometer depth resolution is investigated using an innovative pulsed-radiofrequency glow discharge time-of-flight mass spectrometer (pulsed-rf-GD-TOFMS). A series of ultra-thin (in nanometers approximately) Al/Nb bilayers, deposited on Si wafers by dc-magnetron sputtering, is analyzed. An Al layer is first deposited on the Si substrate with controlled and different values of the layer thickness, t Al. Samples with t Al = 50, 20, 5, 2, and 1 nm have been prepared. Then, a Nb layer is deposited on top of the Al one, with a thickness t Nb = 50 nm that is kept constant along the whole series. Qualitative depth profiles of those layered sandwich-type samples are determined using our pulsed-rf-GD-TOFMS set-up, which demonstrated to be able to detect and measure ultra-thin layers (even of 1 nm). Moreover, Gaussian fitting of the internal Al layer depth profile is used here to obtain a calibration curve, allowing thickness estimation of such nanometer layers. In addition, the useful yield (estimation of the number of detected ions per sputtered atom) of the employed pulsed-rf-GD-TOFMS system is evaluated for Al at the selected operating conditions, which are optimized for the in-depth profile analysis with high depth resolution.  相似文献   

9.
Vesuvianite, a complex sorosilicate, often contains variable (from trace-to-minor-element) amounts of H, B and F. We describe a microanalytical study of H, B and F in vesuvianite by means of Electron Probe Microanalysis (EPMA), Secondary Ion Mass Spectrometry (SIMS), and single-crystal Fourier-Transform InfraRed (FTIR) spectroscopy. Most crystals investigated are B- (up to 3.67 wt% B2O3) and F-rich (up to 2.38 wt%); H2O ranges from 0.243 to 0.665 wt%. The H data obtained by SIMS allowed us to calibrate the quantitative analysis of H2O by FTIR spectroscopy. The resulting molar absorption coefficient (ɛ i = 100 000 ± 2000 L · mol−1 · cm−2) is in excellent agreement with working curves available from the literature. Moreover, the SIMS data allowed us to obtain the calibration curve to estimate the B2O3 content on the basis on the FTIR absorbance: a i = 34000 ± 1400 · B2O3 (wt%).  相似文献   

10.
The influence of different RuO(2) crystallite sizes was investigated by secondary ion mass spectrometry (SIMS) on the oxide deposited on various support materials (Ni, Ti, Al(2)O(3), oxidized Si(100)). In order to examine the effect of an oxidic environment on the film structure, RuO(2) 20%-TiO(2) 80% at. mixed oxide was deposited on Ti. The polycrystalline coatings were prepared by heating the Ru (and Ti)-containing solution dropped on the supports.1 RuO(2) nanocrystalline coatings were grown by chemical vapor deposition (CVD) from Ru(COD)(eta(3)-allyl)(2).2 The identification of mixed oxide clusters showed the higher reactivity of Ni and Al(2)O(3) over the other substrates. Diffusion and migration characteristics were observed to be influenced by the nature of the support. The results are complementary to those of a previous SIMS investigation.3 Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

11.
 Cu3N films for optical data storage were deposited on Si(100) wafers and 0.6 mm thick polycarbonate DVD base material discs at a temperature of 50 °C by reactive magnetron sputtering. A copper target was sputtered in rf mode in a nitrogen plasma. For basic investigations concerning the composition and structure of Cu3N, Si wafers were used as substrate material. To study the suitability of Cu3N as an optical data storage medium under technical conditions, Cu3N/Al bilayers were deposited on polycarbonate discs. The composition and structure of the films were investigated by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The decomposition of Cu3N into metallic copper and nitrogen was induced and characterized with a dynamic tester consisting of an optical microscope with an integrated high power laser diode. The change in reflectivity induced by the laser pulses was measured by a high sensitivity photo detector. Optimized Cu3N films could be decomposed into metallic copper at pulse lengths of 200 ns. The reflectivity change from 3.2% to 33.2% for completely transformed areas and to 12% for single bits as well as the maximum write data rate of 3.3 Mbit/s demonstrated the suitability of Cu3N for write once optical data storage. Especially the carrier to noise ratio of 41 dB shows an increase of a factor of 3 for this novel material as compared to conventional optical data storage media.  相似文献   

12.
The oxidation and nitridation processes of niobium films in a rapid thermal processing (RTP) – system were investigated. 200 and 500 nm niobium films were deposited via sputtering on sapphire-(1-102)-substrate. At first niobium films were oxidized in molecular oxygen at temperatures ranging from 350 to 500 °C and for times of 1, 2 and 5 min and then nitridated in ammonia at 1000 °C for 1 min using an RTP system. For characterisation of the niobium films complementary analytical methods were used: X-ray diffraction (XRD) for phase analysis, secondary ion mass spectrometry (SIMS) for determining the elemental depth profiles of the films, scanning electron microscopy (SEM) and atomic force microscopy (AFM) for characterisation of the surface morphology of the films. The influence of the substrate, single crystalline sapphire, on the reactivity of the niobium films was studied in dependence of temperature, time of reaction and film thickness. The possibility of existence of niobium oxynitride phase was investigated. According to XRD and SIMS data, there is evidence that an oxynitride phase is formed after oxidation and subsequent nitridation in the bulk of some Nb films. In some of the experiments crack formation in the films or even delamination of the Nb films from the substrates was observed.  相似文献   

13.
Secondary ion mass spectrometry (SIMS) depth profiling has been applied to the study of the thermal annealing of ohmic contacts for high electron mobility transistors. The metallic stacks (Ti/Al/Ni/Au) were deposited over the Al0.28Ga0.72N/GaN/sapphire heterostructures and subjected to a rapid thermal annealing (850 °C for 30 s under N2 atmosphere) to improve the contact performance. The surface morphology and the in-depth chemical distribution of the layered contacts were severely modified due to the treatment. These modifications have been analyzed by SIMS depth profiling and scanning electron microscopy–energy-dispersive X-ray microanalysis. The SIMS analysis conditions have been optimized to achieve simultaneously good sensitivity and to avoid ion-induced mixing effects produced by the primary beam sputtering.  相似文献   

14.
Al‐doped zinc oxide (AZO) thin films were deposited on indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates by radio frequency (RF) magnetron sputtering method at room temperature. The effects of film thickness on the surface structure and the photoluminescence properties of the films were investigated by atomic force microscopy (AFM), secondary ion mass spectroscopy (SIMS) and room temperature photoluminescence (PL). AFM analysis showed that the surface of all films was extremely flat and uniform at nanoscale. Root mean square (RMS) value of the surface roughness which scanned the surface area of 3 µm by 3 µm and grain size increased with increasing the film thickness. Thus, the surface morphology of the films became rough because of the coarse grains. The depth profile of AZO layers was analyzed by SIMS. It was found that the thickness of the AZO layer is almost same with the desired film thickness. The PL intensity of the dominant peak decreased and shifted slightly towards the shorter wavelengths with increasing the film thickness. According to the relationships between luminescence intensity and crystalline characteristics, it was observed that the intensity of the peak decreased by the increased surface area of the grains. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we report on the nickel oxide (NiO) thin films potentiostatically electrodeposited onto indium-doped tin oxide-coated glass substrates by using two types of organic surfactants: (1) non-ionic: polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) and (2) anionic: sodium dodecyl sulfate (SDS). An aqueous solution containing nickel sulfate precursor and potassium hydroxide buffer was used to grow the samples. The effect of organic surfactants on its structural, morphological, wettability, optical, electrochromic, and in situ colorimetry were studied using X-ray diffraction, scanning electron microscopy, contact angle, FT-IR spectroscopy, optical transmittance, cyclic voltammetry, and CIE system of colorimetry. X-ray diffraction patterns show that the films are polycrystalline, consisting of NiO cubic phase. A nanoporous structure with pore diameter of about 150–200 nm was observed for pure NiO. The films deposited with the aid of organic surfactants exhibits various surface morphological feature. PVP-mediated NiO thin film shows noodle-like morphology with well-defined surface area whereas, an ordered pore structure composed of channels of uniform diameter of about 60–80 nm was observed for PEG. A compact and smooth surface with nanoporous structure stem from SDS helps for improved electrochromic performance compared with that of NiO deposits from surfactant-free solution. Wetting behavior shows, transformation from hydrophilic to superhydrophilic nature of NiO thin films deposited with organic surfactant, which helps for much more paths for electrolyte access. The surfactant-mediated NiO produce high color/bleach transmittance difference up to 57% at 630 nm. On oxidation of NiO/SDS, the CIELAB 1931 2° color space coordinates show the transition from colorless to the deep brown state (L* = 84.41, a* = −0.33, b* = 4.41, and L* = 43.78, a* = 7.15, b* = 13.69), with steady decrease in relative luminance. The highest coloration efficiency of 54 cm2 C−1 with an excellent reversibility of 97% was observed for NiO/SDS thin films.  相似文献   

16.
 Significant differences in backscattered electron (BSE) yields exist between the surfaces cleaned by methods used in electron microscopy and spectroscopy. These differences have been observed for Au, Cu and Al specimens, and are interpreted on the basis of simulated BSE yields. Composition and thickness of the surface contamination layers, responsible for the differences, are estimated. The results (7 nm of carbon on Au or 3 nm of oxide on Al) remain within expectation and indicate that the BSE yield measurements and BSE images should be interpreted cautiously. Peculiar results are obtained for Cu, perhaps due to a different cleaning procedure. A new concept of an information depth for the BSE signal is introduced as a depth within which the total BSE yield can be modelled as composed of the yields of layers proportional to their thickness weighted by the escape depths. This concept proved satisfactory for thin surface layers and brought the information depth values 2 to 4 times smaller than first estimated, i.e. half the penetration depth.  相似文献   

17.
V-alloyed AlCrN hard coatings were deposited on silicon wafers (Si (100)) by reactive arc evaporation in a commercial coating system at 500 °C for 10 min, resulting in a coating thickness of ∼500 nm. The chemical composition of the stoichiometric coatings is constant at approximately Al0.70Cr0.05V0.25N regardless of the applied bias voltage during deposition. Coatings synthesized at a low bias of −40 V show a dual-phase structure (hexagonal close-packed and face-centered cubic (fcc)), whereas coatings deposited at a high bias of −150 V have a metastable single-phase structure (face-centered cubic). All samples were oxidized for 15 min under 20 mbar O2 atmosphere and at four different temperatures (550, 600, 650, and 700 °C). The oxidized coatings were subject to depth profiling and element mapping by a time of flight secondary ion mass spectrometry instrument, equipped with a Bi-cluster analysis gun and Cs+-sputter gun. The evaluation of the in-depth distribution of several elements and species points out distinctive differences in the oxidation behavior of the two different coatings, whereas element mapping shows the formation of islands made of oxidized vanadium and aluminum species as the top-most layer of the single-phase (fcc) coating at temperatures above 650 °C.  相似文献   

18.
 A method is reported for measuring Se and Sn in human brain tissue. The patients from whom the samples were taken had no diseases in their central nervous system. Microwave energy was applied to digest the brain samples. The digested samples were analyzed without dilution by transversely heated graphite atomizer for atomic absorption spectrometry with longitudinal Zeeman background correction. The dependence of integrated absorbance on various chemical modifiers has been examined. The most appropriate technique proved to be 5 μl sample injection using 20 μg prereduced palladium-nitrate for Se determination, and 20 μl sample injection applying 10 μg palladium-nitrate + 3 μg magnesium-nitrate for the measurements of Sn. The optimal temperature program was found to be 1200 °C pyrolysis and 2100 °C atomisation temperature for Se and 1500 °C pyrolysis and 2300 °C atomisation temperature for Sn. Accuracy of the applied techniques was tested by the analysis of standard reference materials. The precision was ±5% for Se and ±10% for Sn. The range of recovery values was 85–95% for Se and 95–105% for Sn. The mean Se concentrations in the investigated brain parts ranged from 200 to 700 ng/g, while the Sn concentrations were between 20 and 300 ng/g dry weight. Received October 3, 2000. Revision February 1, 2001.  相似文献   

19.
A Ti/SnO2 + RuO2 + MnO2 electrode was prepared by thermal decomposition of their salts. Results from SEM and XPS analyses, respectively, indicate that the coating layer exhibits a compact structure and the oxidation state of Mn in the coating layer is +IV. The experimental activation energy for the oxygen evolution reaction, which increased linearly with increasing overpotential, is about 8 kJ⋅mol−1 at the equilibrium potential (η=0). The electrocatalytic characteristics of the anode are discussed in terms of ligand substitution reaction mechanisms (Sn1 and Sn2). It was found that the transition state for oxygen evolution at the anode in acidic solution follows a dissociative mechanism (Sn1 reaction). The Ti/SnO2 + RuO2 + MnO2 anode in conjunction with UV illumination was used to degrade phenol solutions, where the concentration of phenol remaining was determined by high-performance liquid chromatography (HPLC). The results indicate that the degradation efficiency of phenol on the anode can reach 96.3% after photoelectrocatalytic oxidation for 3 h.  相似文献   

20.
By electron beam evaporation and RF magnetron sputtering 500 nm thick niobium films were deposited on thermally oxidized Si-(100)-wafers and by RF magnetron sputtering on monocrystalline sapphire-(1-102)-wafers. Investigations by scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed differences of the film morphology depending on the substrate used: films deposited on SiO2 exhibited an even surface with small crystallites, films on sapphire showed parallel surface structures with relatively large and well-shaped crystallites pointing at regular crystal growth influenced by the substrate. These differences in film morphology were also reflected in different reflection intensities of the films in XRD patterns, indicating that the films deposited on sapphire were strongly textured. In a first set of experiments nitridation in molecular nitrogen and ammonia was investigated. In a second set of experiments, it was tried to form oxynitrides of niobium by annealing the nitrided films in molecular oxygen. Particularly by X-ray-diffraction the formation of different nitride and oxide phases in dependence of the reaction temperature was examined. Further, elemental depth profiles were recorded by secondary ion mass spectrometry (SIMS) to track the position of the phases formed in the film. The different substrates led to disparate film reactivities, resulting in different nitridation grades of the films at similar reaction temperatures. In general, larger crystallite sizes resulted in less chemical reactivity of the films: even after nitridation at 1000 °C metallic niobium was still present in films deposited on sapphire. However, no evidence was obtained for the formation of oxynitrides by the process sequence observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号