首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gd2O3:Eu3+ and Li-doped Gd2O3:Eu3+ luminescent thin films have been grown on Si(100) substrates using pulsed laser deposition. The films grown at different deposition conditions show different crystalline and morphology structures and luminescent characteristics. Although both cubic and monoclinic crystalline structures were observed in both Gd2O3:Eu3+ and Li-doped Gd2O3:Eu3+ films, the cubic structure becomes more dominant for Li-doped Gd2O3:Eu3+ films. The photoluminescence brightness data obtained from Li-doped Gd2O3:Eu3+ films indicate that Si(100) is a promising substrate for growth of high-quality Li-doped Gd2O3:Eu3+ thin-film red phosphor. In particular, the incorporation of Li+ ions into the Gd2O3 lattice induced a change of crystallinity and enhanced surface roughness. Two major factors to determine photoluminescence brightness for Li-doped Gd2O3:Eu3+ films were crystalline phase and surface roughness. The highest emission intensity was observed with Gd1.84Li0.08Eu0.08O3, whose brightness was a factor of 2.1 larger than that of Gd2O3:Eu3+ films. This phosphor is promising for applications in flat-panel displays. PACS 78.20.-e; 78.55.-m; 78.66.-w  相似文献   

2.
Y2-xGdxO3:Eu3+ luminescent thin films have been grown on Al2O3(0001) substrates using pulsed laser deposition. Films grown under different deposition conditions have been characterized using microstructural and luminescence measurements. The crystallinity, surface morphology and photoluminescence (PL) of the films are highly dependent on the amount of Gd present. The photoluminescence (PL) brightness data obtained from Y2-xGdxO3:Eu3+ films grown under optimized conditions have indicated that Al2O3(0001) is one of the most promising substrates for the growth of high-quality Y2-xGdxO3:Eu3+ thin-film red phosphors. In particular, the incorporation of Gd into the Y2O3 lattice could induce a remarkable increase of PL. The highest emission intensity was observed with Y1.35Gd0.60Eu0.05O3, whose brightness was increased by a factor of 3.1 in comparison with that of Y2O3:Eu3+ films. This phosphor may be promising for application in flat-panel displays. PACS 78.20.-e; 78.55.-m; 78.66.-w  相似文献   

3.
Gd-substituted Y1-xGdxVO4:Eu3+ luminescent thin films have been grown on Al2O3(0001) substrates using pulsed-laser deposition. The films grown under different deposition conditions have been characterized using microstructural and luminescent measurements. The crystallinity, surface morphology, and photoluminescence (PL) of the films are highly dependent on the amount of Gd. The photoluminescence (PL) brightness data obtained from Y1-xGdxVO4:Eu3+ films grown under optimized conditions have indicated that the PL brightness is more dependent on the surface roughness than the crystallinity of the films. In particular, the incorporation of Gd into the YVO4 lattice could induce a remarkable increase of PL. The highest emission intensity was observed with Y0.57Gd0.40Eu0.03VO4 thin film whose brightness was increased by a factor of 2.5 and 1.9 in comparison with that of YVO4:Eu3+ and GdVO4:Eu3+ films, respectively. This phosphor have application to flat panel displays. PACS 78.20.-e; 78.55.-m; 78.66.-w  相似文献   

4.
The influence of lithium doping on the crystallization, the surface morphology, and the luminescent properties of pulsed laser deposited Y2−xGdxO3:Eu3+ thin film phosphors was investigated. The crystallinity, the surface morphology, and the photoluminescence (PL) of films depended highly on the Li-doping and the Gd content. The relationship between the crystalline and morphological structures and the luminescent properties was studied, and Li+ doping was found to effectively enhance not only the crystallinity but also the luminescent brightness of Y2−xGdxO3:Eu3+ thin films. In particular, the incorporation of Li and Gd into the Y2O3 lattice could induce remarkable increase in the PL. The highest emission intensity was observed Li-doped Y1.35Gd0.6O3:Eu3+ thin films whose brightness was increased by a factor of 4.6 in comparison with that of Li-doped Y2O3:Eu3+ thin films.  相似文献   

5.
Eu3+-doped yttrium oxide (Eu:Y2O3) films were grown on fused-silica substrates by laser ablation. Depending on oxygen pressure, substrate temperature and laser energy density, the crystalline structure of the films, determined by X-ray diffraction and Raman spectroscopy, changes from monoclinic to cubic. The crystalline structure of the films is confirmed by Eu3+ fluorescence spectra and refractive indices, measured by m-line spectroscopy. The cubic crystalline films show low-loss waveguiding properties. PACS 81.15.Fg; 78.55.Hx; 78.20.Ci  相似文献   

6.
Li-doping has been used to improve luminescent characteristics of thin films. Influence of Li-doping on the crystallization, surface morphology and luminescent properties of GdVO4:Eu3+ films have been investigated. Crystallinity and surface morphology of thin films have been very important factors to determine luminescent characteristics and depended on the deposition conditions. The GdVO4:Eu3+ and Li-doped GdVO4:Eu3+ thin films have been grown using pulsed laser deposition method on Al2O3 (0 0 0 1) substrates at a substrate temperature of 600 °C under an oxygen pressure of 13.33-53.33 Pa. The crystallinity and surface morphology of the films were investigated using X-ray diffraction (XRD) and atomic force microscope (AFM), respectively. A broadband incoherent ultraviolet light source with a dominant excitation wavelength of 310 nm and a luminescence spectrometer have been used to measure photoluminescence spectra at room temperature. The emitted radiation was dominated by the red emission peak at 619 nm radiated from the transition of 5D0-7F2 of Eu3+ ions. Particularly, the peak intensity of Li-doped GdVO4 films was increased by a factor of 1.7 in comparison with that of GdVO4:Eu3+ films. The enhanced luminescence results not only from the improved crystallinity but also from the reduced internal reflections caused by rougher surfaces. The luminescent intensity and surface roughness exhibited similar behavior as a function of oxygen pressure.  相似文献   

7.
Eu3+-doped lutetium oxide (Eu:Lu2O3) nanocrystalline films were grown on fused-silica substrates by pulsed laser deposition. Depending on deposition conditions (oxygen pressure, temperature and laser energy), the structure of the films changed from amorphous to crystalline and the cubic or monoclinic phases were obtained with varying preferential orientation and crystallite size. The monoclinic phase could be prepared for the first time at temperatures as low as 240 °C and in a narrow range of parameters. Although this phase has been previously reported for powder samples, it occurs only for high pressures and high temperatures preparation conditions. The refractive indices were measured by m-lines spectroscopy for both crystalline phases and their dispersion curve fitted by the Sellmeier expression. The specific Eu3+ fluorescence properties of the different phases, monoclinic and cubic, were registered and show modifications due to the disorder induced by the nanometric size of the crystallites, emphasised in particular by quasi-selective excitation in the charge transfer band.  相似文献   

8.
刘林峰  吕树臣 《发光学报》2009,30(2):228-232
利用共沉淀法制备了纳米晶Gd2O3 : Eu3+发光粉体。 在不同掺杂浓度、不同煅烧温度的系列样品中,均观测到Eu3+离子的特征发射。样品的晶相与发射性质的研究表明:所制备的样品经800~1 300 ℃热处理后,晶相为立方相,1 400 ℃时开始向单斜相转变。荧光强度与Eu3+离子掺杂浓度关系研究表明:在不同掺杂浓度中,Eu3+离子浓度为4%时其相对发射强度最强。在三个不同的煅烧温度中,经800 ℃煅烧的样品其发光效果最好。此外还观察到电荷转移激发态以及基质、Gd3+与Eu3+之间的能量传递。激发谱包含三部分,即电荷转移带、Eu3+的4f内壳层电子跃迁和Gd3+的激发谱。  相似文献   

9.
Nanostructured Gd2O3:Eu3+ and Li+ doped Gd2O3:Eu3+ thin films were prepared by pulsed laser ablation technique. The effects of annealing and Li+ doping on the structural, morphological, optical and luminescent properties are discussed. X-ray diffraction and Micro-Raman investigations indicate a phase transformation from amorphous to nanocrystalline phase and an early crystallization was observed in Li+ doped Gd2O3:Eu3+ thin films on annealing. AFM images of Li+ doped Gd2O3:Eu3+ films annealed at different temperatures especially at 973 K show a spontaneous ordering of the nanocrystals distributed uniformly all over the surface, with a hillocks (or tips) like self-assembly of nanoparticles driven by thermodynamic and kinetic considerations. Enhanced photoemission from locations corresponding to the tips suggest their use in high resolution display devices. An investigation on the photoluminescence of Gd2−xEuxO3 (x=0.10) and Gd2−xyEuxLiyO3 (x=0.10, y=0.08) thin films annealed at 973 K reveals that the enhancement in luminescence intensity of about 3.04 times on Li+ doping is solely due to the increase in oxygen vacancies and the flux effect of Li+ ions. The observed decrease in the values of asymmetric ratio from the luminescence spectra of Li+ doped Gd2O3:Eu3+ films at high temperature region is discussed in terms of increased EuO bond length as a result of Li+ doping.  相似文献   

10.
Zinc phosphate glasses doped with Gd2O3:Eu nanoparticles and Eu2O3 were prepared by conventional melt-quench method and characterized for their luminescence properties. Binary ZnO-P2O5 glass is characterized by an intrinsic defect centre emission around 324 nm. Strong energy transfer from these defect centres to Eu3+ ions has been observed when Eu2O3 is incorporated in ZnO-P2O5 glasses. Lack of energy transfer from these defect centres to Eu3+ in Gd2O3:Eu nanoparticles doped ZnO-P2O5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between the luminescent centre and Eu3+ ions. Both doped and undoped glasses have the same glass transition temperature, suggesting that the phosphate network is not significantly affected by the Gd2O3:Eu nanoparticles or Eu2O3 incorporation.  相似文献   

11.
Binary (ZnO)0.5(P2O5)0.5 glasses doped with Eu2O3 and nanoparticles of Gd2O3:Eu were prepared by conventional melt-quench method and their luminescence properties were compared. Undoped (ZnO)0.5(P2O5)0.5 glass is characterized by a luminescent defect centre (similar to L-centre present in Na2O-SiO2 glasses) with emission around 324 nm and having an excited state lifetime of 18 ns. Such defect centres can transfer the energy to Eu3+ ions leading to improved Eu3+ luminescence from such glasses. Based on the decay curves corresponding to the 5D0 level of Eu3+ ions in both Gd2O3:Eu nanoparticles incorporated as well as Eu2O3 incorporated glasses, a significant clustering of Eu3+ ions taking place with the latter sample is confirmed. From the lifetime studies of the excited state of L-centre emission from (ZnO)0.5(P2O5)0.5 glass doped with Gd2O3:Eu nanoparticles, it is established that there exists weak energy transfer from L-centres to Eu3+ ions. Poor energy transfer from the defect centres to Eu3+ ions in Gd2O3:Eu nanoparticles doped (ZnO)0.5(P2O5)0.5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between luminescent centre and Eu3+ ions.  相似文献   

12.
We investigate the fundamental properties of films resulting from the deposition of Eu3+ doped Gd2O3 clusters. We first report that the crystalline structure of clusters with diameter as low as 2.8 nm is still BCC (as in the bulk phase at ambient temperature and pressure). No phase transition to monoclinic structure is observed. We show that contamination from air (formation of hydroxide) is important and leads to the modification of the luminescence of the Eu3+ ions. Furthermore, films protected from this contamination have been fabricated and show a new feature (broad peak at 625 nm). It means that contamination is not the only mechanism responsible for the modification of the light emission spectrum. The crystal field symmetry breaking induced by the surface also plays a major role. Eventually, we show that the widening of the optical gap continues for these very small clusters. We discuss this effect in the frame of the quantum confinement model.  相似文献   

13.
The cathodoluminescence (CL) intensities of Y2SiO5:Ce3+, Gd2O2S:Tb3+ and SrAl2O4:Eu2+,Dy3+ phosphor thin films that were grown by pulsed laser deposition (PLD) were investigated for possible application in low voltage field emission displays (FEDs) and other infrastructure applications. Several process parameters (background gas, laser fluence, base pressure, substrate temperature, etc.) were changed during the deposition of the thin films. Atomic force microscopy (AFM) was used to determine the surface roughness and particle size of the different films. The layers consist of agglomerated nanoparticle structures. Samples with good light emission were selected for the electron degradation studies. Auger electron spectroscopy (AES) and CL spectroscopy were used to monitor changes in the surface chemical composition and luminous efficiency of the thin films. AES and CL spectroscopy were done with 2 keV energy electrons. Measurements were done at 1×10−6 Torr oxygen pressure. The formation of different oxide layers during electron bombardment was confirmed with X-ray photoelectron spectroscopy (XPS). New non-luminescent layers that formed during electron bombardment were responsible for the degradation in light intensity. The adventitious C was removed from the surface in all three cases as volatile gas species, which is consistent with the electron stimulated surface chemical reaction (ESSCR) model. For Y2SiO5:Ce3+ a luminescent SiO2 layer formed during the electron bombardment. Gd2O3 and SrO thin films formed on the surfaces of Gd2O2S:Tb3+ and SrAl2O4:Eu2+,Dy3+, respectively, due to ESSCRs.  相似文献   

14.
Thin Er3+, Yb3+ co-doped Y2O3 films were grown on (1 0 0) YAG substrates by pulsed laser deposition. Ceramic targets having different active ion concentration were used for ablation. The influence of the rare-earth content and oxygen pressure applied during the deposition on the structural, morphological and optical properties of the films were investigated. The films deposited at the lower pressure, 1 Pa, and at 1/10 Er to Yb doping ratio are highly textured along the (1 1 1) direction of the Y2O3 cubic phase. In addition to the crystalline structure, these films possess smoother surface compared to those prepared at the higher pressure, 10 Pa. All other films are polycrystalline, consisting of cubic and monoclinic phases of Y2O3. The rougher surface of the films produced at the higher-pressure leads to higher scattering losses and different behavior of the reflectivity spectra. Optical anisotropy in the films of less than 0.004 was measured regardless of the monoclinic structure obtained. Waveguide losses of about 1 dB/cm at 633 nm were obtained for the films produced at the lower oxygen pressure.  相似文献   

15.
The color rendering index (CRI) and structural stability of cerium doped yttrium aluminum garnet (YAG:Ce) based phosphors have been enhanced by replacing Y3+ ions by larger radius ions (Tb3+, Gd3+, Eu3+, and Sm3+) at the dodecahedral site and replacing Al3+ ions by larger ones (Ga3+, Y3+, Tb3+, Gd3+, and Sm3+) at the octahedral site. These aluminum garnet crystalline powders were prepared by solvothermal reaction method at 300 °C for 48 h. The lattice constant values of synthetic aluminum garnet crystalline powders are larger than that of YAG and the emission wavelength of Ce3+ ion of these samples is longer than that of YAG:Ce. FESEM and TEM studies revealed that the Ln3Ga2Al3O12 and Ln3Al2Al3O12 crystalline powders have 3-dimensional star-like morphology with submicron size and good crystallinity, while, Ln3(LnAl)Al3O12 garnet crystalline powders were cubic crystalline phases and shaped as cubes with the round edge having an approximate diameter of about 200–400 nm. All the prepared powders were grown along (100) direction and crystallized into single crystal. Also, the effects of treatment time and reaction temperature on the structure of aluminum garnet crystalline powders have been investigated.  相似文献   

16.
Alumina (Al2O3) powders doped with europium trivalent (Eu3+) were prepared by a low-temperature (∼280 °C) combustion synthesis technique. When the powder was heat treated at 1200 °C for 2 h in the presence of flowing ammonia (NH3), α-Al2O3 crystalline ceramic powders was obtained. The analysis of the luminescence showed that Eu3+ was reduced to europium divalent (Eu2+) after the heat-treatment process. Under ultraviolet (UV) lamp excitation (λ=254 nm) these powders containing sub-microcrystalline structures present bright red (Al2O3:Eu3+) and green (Al2O3:Eu2+) luminescence indicating that this material is a potential candidate for applications in phosphor technology.  相似文献   

17.

The synthesis, morphological characterization, and optical properties of colloidal, Eu(III) doped Gd2O3 nanoparticles with different sizes and shapes are presented. Utilizing wet chemical techniques and various synthesis routes, we were able to obtain spherical, nanodisk, nanotripod, and nanotriangle-like morphology of Gd2O3:Eu3+ nanoparticles. Various concentrations of Eu3+ ions in the crystal matrix of the nanoparticles were tested in order to establish the levels at which the concentration quenching effect is negligible. Based on the luminescence spectra, luminescence lifetimes and optical parameters, which were calculated using the simplified Judd–Ofelt theory, correlations between the Gd2O3 nanoparticles morphology and Eu3+ ions luminescence were established, and allowed to predict the theoretical maximum quantum efficiency to reach from 61 to 98 %. We have also discussed the impact of the crystal structure of Gd2O3 nanoparticles, as well as coordinating environment of luminescent ions located at the surface, on the emission spectra. With the use of a tunable femtosecond laser system and the Z-scan measurement technique, the values of the effective two-photon absorption cross-section in the wavelength range from 550 to 1,200 nm were also calculated. The nonlinear optical measurements revealed maximum multi-photon absorption in the wavelength range from 600 to 750 nm.

  相似文献   

18.
Li-Ya Zhou  Wei Wang  Qi Pang  Meng-Lian Gong 《Optik》2010,121(16):1516-1519
Gd2O3:Eu3+ rods were successfully obtained by microwave heating the as-prepared substance, which templated by surfactant assemblies of gadolinium hydroxide and europium hydroxide, formed in a reaction between Gd(NO3)3-Eu(NO3)3 and urea. Transmission electron microscopy (TEM) characterizations indicated that the synthesized rods with an averaging diameter of 100-150 nm and agglomerates slightly. Powder X-ray diffraction (XRD) results indicated that the resultant rods were cubic Gd2O3. The luminescent of Gd2O3:Eu3+ rods were investigated by photoluminescence (PL). Upon excitation with 257 and 277 nm, respectively, Gd2O3:Eu3+ rods show a strong red emission line at around 611 nm. Furthermore, this novel method required a very short heating time, thus reducing the energy consumption.  相似文献   

19.
Red-emitting Eu3+-doped Gd2O3 spherical powders were directly precipitated using a polyol method. The as-synthesized powders consist of agglomerates with a spherical shape and a size ranging between 0.4 and 0.6 μm. Each agglomerate is nanostructured and consists of a packing of nanocrystallites (3–5 nm) of a bcc oxide phase whose luminescence presents original features in comparison with bulk materials. The powders were further calcinated and the size of both crystallites and agglomerates, the crystalline structure and the luminescence were studied as a function of the annealing temperature. For temperatures lower than 900 °C, the samples obtained are highly crystalline and possess the classical Eu3+ red luminescence. For optimized temperature, the morphology of the particles can be preserved leading to spherical, dense, luminescent and almost monodisperse oxide powders, 0.5 μm in size. PACS 81.07.Bc; 81.07.Wx; 81.16.Be; 75.50.-y; 42.70.-a  相似文献   

20.
Spectra of Eu3+ in various dielectric matrices (Gd2O3:Eu3+, Y2O3:Eu3+, Eu2O3, and mSiO2/Gd2O3:Eu3+ mesoporous particles) are studied by local cathodoluminescence. The results allowed identification of the local environment of Er3+ ions in amorphous samples and detection of the monoclinic Eu2O3 phase impurity in samples with yttrium oxide. The cathodoluminescence spectra of chemically pure Y2O3, Eu2O3, and Gd2O3 are recorded. Conclusions about the structural features of the materials are made and confirmed by other methods (XRD and EPMA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号